Тело движется по прямой так, что расстояние S от начальной точки изменяется по закону S=(t)=17t-2t^2 (м), где t - время движения в секундах. Найдите скорость тела через 2 секунды после начала движения.
заметим что любое положительное целое значение х не решение, так как [x]² - x*[x] = 0 и 3 > 0
Немного пугает квадрат первого члена и хочется решить квадратное уравнение, но это не так. Так как [x] и [x]² это целые числа, а не переменные и у нас линейная зависимоть
[x] <= x
x = [x] + {x} целая и дробная части
0 ≤ {x} < 1
теперь будем оценивать неравенство
[x]² - x*[x] + 3 ≤ 0
[x]² + 3 ≤ x*[x]
([x]² + 3)/[x] ≤ x
имеем право [x] = 0 когда 0≤ x < 1 тогда [x]² - x*[x] = 0 и 3 > 0 не корень
[x] + 3/[x] ≤ x
x - [x] ≥ 3/[x]
{x} ≥ 3/[x]
0 ≤ {x} < 1 значит 3/[x] < 1 [x} ≥ 4 но минимум [х] = 4 то есть 4 < x < 5
Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
[x]² - x*[x] + 3 ≤ 0
наименьшее положительное решение найти
x > 0
заметим что любое положительное целое значение х не решение, так как [x]² - x*[x] = 0 и 3 > 0
Немного пугает квадрат первого члена и хочется решить квадратное уравнение, но это не так. Так как [x] и [x]² это целые числа, а не переменные и у нас линейная зависимоть
[x] <= x
x = [x] + {x} целая и дробная части
0 ≤ {x} < 1
теперь будем оценивать неравенство
[x]² - x*[x] + 3 ≤ 0
[x]² + 3 ≤ x*[x]
([x]² + 3)/[x] ≤ x
имеем право [x] = 0 когда 0≤ x < 1 тогда [x]² - x*[x] = 0 и 3 > 0 не корень
[x] + 3/[x] ≤ x
x - [x] ≥ 3/[x]
{x} ≥ 3/[x]
0 ≤ {x} < 1 значит 3/[x] < 1 [x} ≥ 4 но минимум [х] = 4 то есть 4 < x < 5
{x} ≥ 3/4
{x} = 3/4 минимум
x = [x] + {x} = 4 + 3/4 = 4 3/4 = 4.75
проверяем
[4.75]² - 4.75*[4,75] + 3 = 16 - 19 + 3 = 0 ≤ 0 да
для надежности проверим два ближайших числа 4,74 и 4.76
[4.74]² - 4.74*[4,74] + 3 = 16 - 18.96 + 3 = 0.04 > 0
[4.76]² - 4.76*[4,76] + 3 = 16 - 19.04 + 3 = -0.04 < 0
ответ 4.75
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) Смотрим: какие из них попали в указанный промежуток.
4) Ищем значения данной функции в этих точках и на концах данного промежутка.
5) пишем ответ
Начали?
1) у'= 3x² -18x +24
2) 3x² - 18x + 24 -0
x² - 6x +8 = 0
По т. Виета х = 2 и 4
3) в наш промежуток попало число 2
4) х = 2
у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19
х = -1
у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35
х = 3
у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17
5) max y = 19
[-1; 3]