с вероятностью. Среди 25 студентов, из которых 15 девушек, разыгрываются 4 билета в театр, причём каждый может выиграть только один билет. Найти вероятность того, что среди обладателей билетов окажется два юношы и две девушки
Всего мальчиков 25-15=10. Три юноши и одна девушка могут выиграть 4 билета Всего благоприятных событий: C^3_{10}C^1_{15}=15C^3_{10}C103C151=15C103
Вероятность того, что среди обладателей билетов окажутся 3 юноши 1 девушка равна \dfrac{15C^3_{10}}{C^4_{15}}C15415C103
б) Билеты могут получить хотя бы 1 юноша, то есть это можно рассматривать как 1 юноша и 3 девушки или 2 юноша и 2 девушки или 3 юноша и 1 девушка или 4 юноша и 0 девушек. Всего вариантов получить 4 билета может выиграть хотя бы 1 юноша Вероятность того, что среди обладателей билетов окажутся хотя бы 1 юноша равна \dfrac{10C^3_{15}+C^2_{10}C^2_{15}+15C^3_{10}+C^4_{10}C^0_{15}}{C^4_{25}}C25410C153+C102C152+15C103+C104C150
а) Всего все возможных исходов: C^4_{25}C254
Всего мальчиков 25-15=10. Три юноши и одна девушка могут выиграть 4 билета Всего благоприятных событий: C^3_{10}C^1_{15}=15C^3_{10}C103C151=15C103
Вероятность того, что среди обладателей билетов окажутся 3 юноши 1 девушка равна \dfrac{15C^3_{10}}{C^4_{15}}C15415C103
б) Билеты могут получить хотя бы 1 юноша, то есть это можно рассматривать как 1 юноша и 3 девушки или 2 юноша и 2 девушки или 3 юноша и 1 девушка или 4 юноша и 0 девушек. Всего вариантов получить 4 билета может выиграть хотя бы 1 юноша Вероятность того, что среди обладателей билетов окажутся хотя бы 1 юноша равна \dfrac{10C^3_{15}+C^2_{10}C^2_{15}+15C^3_{10}+C^4_{10}C^0_{15}}{C^4_{25}}C25410C153+C102C152+15C103+C104C150