Суммативное оценивание по алгебре за 2 четверть, 9 класс. ) Вариант 2 В арифметической прогрессии известно, что a,=12; da Halume ag. (16) 2. В арифметической последовательности а4 + do = 10. Найдите сумму двенадцати членов арифметической прогрессни. (36) 3. Сколько положительных членов в арифметической прогрессии? 21:18: ... (40) 4. Найдите первый член геометрической прогрессин (bg), если известно, что bs = 9 b = 144 (36) 5. Сумма третьего и пятого членов геометрической прогрессии равна 20, а сумма четвертого и шестого членов равна -40. Найдите сумму первых четырех членов геометрической прогрессии. (66) 6. Найдите сумму бесконечно убывающей прогрессин 8: 2:0.5; (16) 7. Представьте число ав виде обыкновенной дроби. В ответе запишите 30а
Нам дан график линейной функции y = 5x - 1, а также точки: А(1;4), B(2;7).
Подставим значения иксов и игриков в формулу, задающую этот график:
4 = 5 * 1 - 1
4 = 4 - точка А принадлежит этому графику.
Подставляем значения второй точки в формулу:
7 = 5 * 2 - 1
7 не равно 9 - точка B не принадлежит этому графику.
Задача №2.
Здесь необходимо построить график функции. Как его строить? Чертим табличку, в первой строке - x, во второй - y. Подбирай любое значение x, потом это значение x подставляй в формулу y = -3x + 5, вычисляй.
Моя прямая пересекала только ось 0x в точке (1,5;0), ось 0y прямая не пересекла.
Задача №3.
Подставим значения в формулу y = kx
-2 = -1k
Решим линейное уравнение:
1k = 2
k = 2
График линейной функции построй сам. Примечание: график будет проходить через начало координат.
Задача №5.
Составим систему линейных уравнений:
Эту систему мы решаем методом сложения. У нас есть одинаковая переменная y, которую можно уничтожить путем вычитания. Следовательно, мы будем два уравнения вычитать.
Обозначим недостающее число через x.
а) Среднее арифметическое данного ряда = 24:
(3+8+15+30+x+24)/6 = 24; 80 + x = 24*6;
80 + х = 144
х = 144 - 80
х = 64
Пропущено число 64.
б) Размах ряда - это разность между наибольшим и наименьшим значениями ряда.
Если в ряду содержатся только положительные числа, то пропущено наибольшее число, оно равно :
x-3 = 52;
x= 55.
Если в ряду могут быть отрицательные числа, то пропущено наименьшее число, оно равно 12:
64-x=52;
x = 64-52 = 12.
в) Мода ряда - это число, которое встречается наиболее часто. Так как мода = 8, то пропущено число 8.
Объяснение:
Объяснение:
Задача №1.
Нам дан график линейной функции y = 5x - 1, а также точки: А(1;4), B(2;7).
Подставим значения иксов и игриков в формулу, задающую этот график:
4 = 5 * 1 - 1
4 = 4 - точка А принадлежит этому графику.
Подставляем значения второй точки в формулу:
7 = 5 * 2 - 1
7 не равно 9 - точка B не принадлежит этому графику.
Задача №2.
Здесь необходимо построить график функции. Как его строить? Чертим табличку, в первой строке - x, во второй - y. Подбирай любое значение x, потом это значение x подставляй в формулу y = -3x + 5, вычисляй.
Моя прямая пересекала только ось 0x в точке (1,5;0), ось 0y прямая не пересекла.
Задача №3.
Подставим значения в формулу y = kx
-2 = -1k
Решим линейное уравнение:
1k = 2
k = 2
График линейной функции построй сам. Примечание: график будет проходить через начало координат.
Задача №5.
Составим систему линейных уравнений:
Эту систему мы решаем методом сложения. У нас есть одинаковая переменная y, которую можно уничтожить путем вычитания. Следовательно, мы будем два уравнения вычитать.
Получаем:
0 = -2 - 3x - 1
Решаем линейное уравнение:
3x = -2-1+0
3x = -3 |:3
x = -1
x = -1
y = -2