Стартовали они оба из одной точки и побежали в одну сторону вокруг моря, которое на самом деле было небольшим солёным озером, береговая линия которого в целом
составляла 6 км. Средняя скорость зайца на протяжении этого времени составляла
93 км/ч, и через 20 минут после
старта он опережал чертёнка на один круг вокруг озера.
Какова была скорость чертёнка, которому не следовало тягаться с самим Балдою, раз он
не мог догнать его меньшого брата?
очень и нужно
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
28 или 35
Объяснение:
Соединим линиями мальчиков и девочек, которые дружат друг с другом.
Количество линий выходящих от мальчиков равно 2м, от девочек 5д
Так как это одни и те же линии, то 2м=5д.
Минимальное количество учеников 25, максимальное 2*19=38
Количество девочек связано с количеством мальчиков соотношением д=2/5м
Тогда количество учеников а классе равно (м+д)=2/5м+м=7/5м
25<=7/5м<=38
25*5/7<=м<=38*5/7
18<=м<=27
Из равенства 2м=5д, следует, что количество мальчиков делится на 5
Значит м может принимать значения 20 и 25, в этом случае количество девочек 8 и 10. Тогда возможное количество учеников в классе 28 и 35.