Промежуток знакопостоянства функции - это промежуток, в котором функция сохраняет свой знак. Для нахождения промежутки знакопостоянства линейной функции f(x)=2·x-5 сначала находим нули функции:
f(x)=0 ⇔ 2·x-5=0 ⇔ 2·x = 5 ⇔ x = 2,5.
Так как других нулей у функции нет, то линейная функция f(x)=2·x-5 меняет свой знак только один раз. Поэтому промежутками знакопостоянства будут:
2 и 4
Объяснение:
Пусть x это первое натурально, у второе натуральное число, х€N, у€N
По условию
Х*У<20
{2у-х=6
Решим второе неравенство
-Х=6-2у; Х=2у-6, подставим в первое
(2у-6) у<20
2у²-6у<20| разделим на 2
У²-3у-10<0
По теореме Виета у1*у2=-10; у1+у2=3
У1=-2; у2=5
Так как у²-3у-10 парабола с ветвями вверх и нам надо <0, то у€(-2;5), так как числа натуральные, то из (-2;5) подойдут 1,2,3,4
Проверим у=1, тогда 2*1-х=6, х=-4 не подходит, так как х не натуральное число
У=2, тогда 2*2-х=6; х=-2 не подходит
У=3, тогда 2*3-х=6, Х=0 не подходит
У=4, тогда 2*4-х=6; Х=2 подходит
Проверим
Х=2, у=4
2*4-2=6; 6=6 верно
2*4<20 верно
Тогда наши натуральные числа это 2 и 4
(-∞; 2,5) и (2,5; +∞)
Объяснение:
Промежуток знакопостоянства функции - это промежуток, в котором функция сохраняет свой знак. Для нахождения промежутки знакопостоянства линейной функции f(x)=2·x-5 сначала находим нули функции:
f(x)=0 ⇔ 2·x-5=0 ⇔ 2·x = 5 ⇔ x = 2,5.
Так как других нулей у функции нет, то линейная функция f(x)=2·x-5 меняет свой знак только один раз. Поэтому промежутками знакопостоянства будут:
(-∞; 2,5) и (2,5; +∞).
При x∈(-∞; 2,5) функция отрицательна в силу:
f(0)=2·0-5= -5<0,
а при x∈(2,5; +∞) функция положительна в силу:
f(10)=2·10-5= 15>0.