а) у=9х+5
6х+y=-25
6х+9х+5=-25
15х=-25-5
15х=-30
х=-2
у=9·(-2)+5
у=-18+5
у=-13
в)
y = -8x - 15;
y = 5x + 24,
5x + 24 = -8x - 15;
5x + 8x = -15 - 24;
13x = -39;
x = -39 : 13;
x = -3.
y = 5 * (-3) + 24 = -15 + 24 = 9.
б)
y = 13x - 7;
y = 23x - 6,
23x - 6 = 13x - 7;
y = 13x - 7.
23x - 13x = 6 - 7;
x(23 - 13) = -1;
10x = -1;
x = -1 : 10;
x = -0.1.
y = 13 * (-0.1) - 7 = -1.3 - 7 = -8.3.
ответ: (-0.1; -8.3).
г)
y = -11x + 9;
y = -21x + 11,
-21x + 11 = -11x + 9;
y = -11x + 9.
-21x + 11x = 9 - 11;
-10x = -2;
x = -2 : (-10);
x = 1/5.
x = 1/5 = 0.2;
y = -11 * 1/5 + 9 = -2.2 + 9 = 6.8.
Объяснение:
1) дано: ∠1 = ∠2,∠3 = ∠4
доказать: ΔАВС=ΔADС
доказательство:
ΔАВС=ΔADС (по первому признаку)
∠1 =∠2
∠3 =∠4
АС=АС (общая)
ответ:ΔАВС=ΔADС
2) дано: АС = СВ, ∠A = ∠B
доказать: ΔBCD = ΔАСЕ
ΔBCD = ΔАСЕ (по первому признаку)
АС = СВ
∠A = ∠B
ответ: ΔBCD = ΔАСЕ
3) дано: AD - биссектриса угла ВАС, ∠1 = ∠2
доказать:ΔABD = ΔACD
ΔABD = ΔACD (по 1му признаку)
AD - биссектриса угла ВАС
∠1 = ∠2
АD- общая
ответ: ΔABD = ΔACD
4) дано: ВО = ОС, ∠1 = ∠2
доказать: АВО и ОDС- равные
ΔАВО=ΔОDС (по 1му признаку)
ВО = ОС
ВС=ВС- общая
АО=ОD
ВА=DC
ответ: равные треугольники это: ΔАВО и ΔОDС
5) дано: ∠1 = ∠2, ∠CAB = ∠DBA
доказать: ΔАВD=ΔBAC
ΔАВD=ΔBA (по 1му признаку)
∠CAB=∠DBA
АD=BC
ответ: равные треугольники это: ΔАВD и ΔСBA
а) у=9х+5
6х+y=-25
6х+9х+5=-25
15х=-25-5
15х=-30
х=-2
у=9·(-2)+5
у=-18+5
у=-13
в)
y = -8x - 15;
y = 5x + 24,
5x + 24 = -8x - 15;
5x + 8x = -15 - 24;
13x = -39;
x = -39 : 13;
x = -3.
y = 5 * (-3) + 24 = -15 + 24 = 9.
б)
y = 13x - 7;
y = 23x - 6,
23x - 6 = 13x - 7;
y = 13x - 7.
23x - 13x = 6 - 7;
x(23 - 13) = -1;
10x = -1;
x = -1 : 10;
x = -0.1.
y = 13 * (-0.1) - 7 = -1.3 - 7 = -8.3.
ответ: (-0.1; -8.3).
г)
y = -11x + 9;
y = -21x + 11,
-21x + 11 = -11x + 9;
y = -11x + 9.
-21x + 11x = 9 - 11;
-10x = -2;
x = -2 : (-10);
x = 1/5.
x = 1/5 = 0.2;
y = -11 * 1/5 + 9 = -2.2 + 9 = 6.8.
Объяснение:
1) дано: ∠1 = ∠2,∠3 = ∠4
доказать: ΔАВС=ΔADС
доказательство:
ΔАВС=ΔADС (по первому признаку)
∠1 =∠2
∠3 =∠4
АС=АС (общая)
ответ:ΔАВС=ΔADС
2) дано: АС = СВ, ∠A = ∠B
доказать: ΔBCD = ΔАСЕ
доказательство:
ΔBCD = ΔАСЕ (по первому признаку)
АС = СВ
∠A = ∠B
ответ: ΔBCD = ΔАСЕ
3) дано: AD - биссектриса угла ВАС, ∠1 = ∠2
доказать:ΔABD = ΔACD
доказательство:
ΔABD = ΔACD (по 1му признаку)
AD - биссектриса угла ВАС
∠1 = ∠2
АD- общая
ответ: ΔABD = ΔACD
4) дано: ВО = ОС, ∠1 = ∠2
доказать: АВО и ОDС- равные
доказательство:
ΔАВО=ΔОDС (по 1му признаку)
ВО = ОС
∠1 = ∠2
ВС=ВС- общая
АО=ОD
ВА=DC
ответ: равные треугольники это: ΔАВО и ΔОDС
5) дано: ∠1 = ∠2, ∠CAB = ∠DBA
доказать: ΔАВD=ΔBAC
доказательство:
ΔАВD=ΔBA (по 1му признаку)
∠1 = ∠2
∠CAB=∠DBA
АD=BC
ответ: равные треугольники это: ΔАВD и ΔСBA