Много избыточных данных в . видимо чтобы запутать. мне представляется все гораздо проще. если скорость каждого автобуса увеличится в двое, то в двое увеличится и их общая скорость сближения, следовательно в двое уменьшиться время в пути. значит и к месту встречи они доберутся в двое быстрее. и встретятся а во сколько они выехали? мы не знаем их время в пусть выехали они в 6 утра. встретились в 12 дня. в пути были 12-6=6 часов. увеличив в двое скорость - в двое уменьшится скорость в пути 6: 2=3 ч. встретятся они в 6+3=9 ч. или еще как вариант, но не уверен в правильности обозначим скорости автобусов через х и у, тогда х+у в 12.00 2х+у в 12.00 - 0.56 = 11.04 х+2у в 12.00 - 1.05 = 10.55 если сложим два последних уравнения (2х+у)+(х+2у) и вычтем первое (2х+у)+(х++у)=2х+у+х+2у-х-у=2х+2у а теперь попробуем тоже самое сделать с правыми частями 11.04+10.55-12.00=21.59 - 12.00= 9.59 получается так, что встреча будет в 9.59
1) В партии 95 нормальных изделий и 5 бракованных. Партию примут, если возьмут 50 изделий и они все будут нормальными. Вероятность Р=95/100*94/99*93/98...46/51 После сокращения остаётся: Р=(50*49*48*47*46)/ (100*99*98*97*96= 50/100*49/98*48/96* (47*46)/(99*97)= (1/2)^3*2167/9603=2167/76824 2) В одной урне 5 Б+3 Ч, в другой 4 Б+4 Ч. Вынимаем шар, он оказался Б. Если 1 шар был из 1 урны, то осталось (4 Б+3 Ч) и (4 Б+4 Ч). Вынимаем 2 шар. Если он из 1 урны, то р1=1/2*4/7=4/14 Если он из 2 урны, то p2=1/2*4/8=4/16 Вероятность, что он белый P(1)=p1+p2=4/14+4/16=60/112 Если 1 шар был из 2 урны, то осталось (5 Б+3 Ч) и (3 Б+4 Ч). Вынимаем 2 шар. Если он из 1 урны, то p3=1/2*5/8=5/16 Если он из 2 урны, то p4=1/2*3/7=3/14 Вероятность, что он белый P(2)=5/16+3/14=83/112 Но 1 шар мог быть из 1 или 2 урны с равной вер-тью 1/2. P=1/2*P(1)+1/2*P(2)= 1/2*60/112+1/2*83/112=143/224
Партию примут, если возьмут 50 изделий и они все будут нормальными. Вероятность
Р=95/100*94/99*93/98...46/51
После сокращения остаётся:
Р=(50*49*48*47*46)/ (100*99*98*97*96=
50/100*49/98*48/96* (47*46)/(99*97)=
(1/2)^3*2167/9603=2167/76824
2) В одной урне 5 Б+3 Ч,
в другой 4 Б+4 Ч.
Вынимаем шар, он оказался Б.
Если 1 шар был из 1 урны, то осталось (4 Б+3 Ч) и (4 Б+4 Ч).
Вынимаем 2 шар.
Если он из 1 урны, то
р1=1/2*4/7=4/14
Если он из 2 урны, то
p2=1/2*4/8=4/16
Вероятность, что он белый
P(1)=p1+p2=4/14+4/16=60/112
Если 1 шар был из 2 урны, то осталось (5 Б+3 Ч) и (3 Б+4 Ч).
Вынимаем 2 шар.
Если он из 1 урны, то
p3=1/2*5/8=5/16
Если он из 2 урны, то
p4=1/2*3/7=3/14
Вероятность, что он белый
P(2)=5/16+3/14=83/112
Но 1 шар мог быть из 1 или 2 урны с равной вер-тью 1/2.
P=1/2*P(1)+1/2*P(2)=
1/2*60/112+1/2*83/112=143/224