Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
ответ: 6 часов и 12 часов.
Объяснение:
Пусть второй каменщик сделает работу за х часов, а первый - за у часов. Тогда по условию, x - y = 6. Производительность труда первого каменщика равна , а производительность труда второго каменщика равна . Зная, что они за 2 часа выложат половину стены, составим и решим систему уравнений
Умножим левую и правую части уравнения на 2x(x-6) ≠ 0
По теореме Виета
— не удовлетворяет условию;
часов потребуется выложить стену второму каменщику;
Первому каменщику потребуется 12 - 6 = 6 часов.
ответ: 6 часов и 12 часов.
1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R)
2) Функция ни четна, ни нечетна
3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3.
Точки пересечения с осью OY в y = 0
4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0.
5)
Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
+ - +
---------------------|-------------|------------------------>
1 3
Функция возрастает на промежутке: (-∞; 1] ∪ [3; +∞)
Функция убывает на промежутке: [1; 3]
Так как нет наибольших и наименьших значений у функции на всем промежутке, то область значений функции колеблется от (-∞; +∞).
График функции дан во вложениях.