Склад выше беседки ,но ниже башни. Дом не ниже склада. Выберите утверждения, которые верны при приведённых условиях.
1) Дом выше беседки.
2) Среди указанных четырёх строений нет ни одного ниже беседки.
3) Беседка и башня одной высоты.
4) Дом и склад обязательно одной высоты
Объяснение:
-x³+675x-(15+x)(225-15x+x²)>0
-x³+675x-(3375+x³)>0
-2x³+675x-3375>0
-2x³+450x+225x-3375>0
-2x³+30x²-30x²+450x+225(x-15)>0
-2x²(x-15)-30x(x-15)+225(x-15)>0
(x-15)(-2x²-30x+225)>0
Допустим:
x-15=0; x₁=15
Проверка при x₁<15:
-0³+675·0-(15+0)(225-15·0+0²)>0
-15·225>0; -3375<0 - неравенство не соблюдается.
Допустим:
-2x²-30x+225=0
2x²+30x-225=0; D=900+1800=2700
x₂=(-30-√2700)/4=(-30-30√3)/4=(-15√3 -15)/2
x₃=(-30+√2700)/4=(15√3 -15)/2
Проверка при x₂>(-15√3 -15)/2:
-0³+675·0-(15+0)(225-15·0+0²)>0; -3375<0 - неравенство не соблюдается.
Проверка при x₃>(15√3 -15)/2:
-10³+675·10-(15+10)(225-15·10+10²)>0
-1000+6750-25·(225-150+100)>0
5750-25·175>0; 5750-4375>0; 1375>0 - неравенство соблюдается.
Следовательно, (-∞<x<(-15√3 -15)/2)∨((15√3 -15)/2<x<15).
ответ: x∈(-∞; (-15√3 -15)/2)∪((15√3 -15)/2; 15).
x1 = -sqrt(1154)*(im(y)^2 + re(y)^2)^(1/4)*cos(atan2(im(y, re(y))/2)/1154 - i*sqrt(1154)*(im(y)^2 + re(y)^2)^(1/4)*sin(atan2(im(y), re(y))/2)/1154)
x2 = sqrt(1154)*(im(y)^2 + re(y)^2)^(1/4)*cos(atan2(im(y, re(y))/2)/1154 + i*sqrt(1154)*(im(y)^2 + re(y)^2)^(1/4)*sin(atan2(im(y), re(y))/2)/1154)
Объяснение:
4 / 2 2 /atan2(im(y), re(y))\ 4 / 2 2 /atan2(im(y), re(y))\
\/ 1154 *\/ im (y) + re (y) *cos|| I*\/ 1154 *\/ im (y) + re (y) *sin||
\ 2 / \ 2 /
x1 = - -
1154 1154
4 / 2 2 /atan2(im(y), re(y))\ 4 / 2 2 /atan2(im(y), re(y))\
\/ 1154 *\/ im (y) + re (y) *cos|| I*\/ 1154 *\/ im (y) + re (y) *sin||
\ 2 / \ 2 /
x2 = +
1154 1154