1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Решение: Обозначим время до встречи автобусов за t, -cкорость V1 первого автобуса равна: V1=132/(t+50/60) -cкорость второго автобуса равна: V2=132/(t+1 12/60) Скорость сближения автобусов равна: 132/(t+50/60)+132/(t+1 12/60)=132/t 132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2) t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132 132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132 132t²+158,4t+132t²+110t=132t²+110t+158,4t+132 132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0 132t²-132=0 132t²=132 t²=132/132 t²=1 t=√1 t=1 Отсюда: -скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)= =132/(11/6)=72(км/час) -скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Обозначим время до встречи автобусов за t,
-cкорость V1 первого автобуса равна:
V1=132/(t+50/60)
-cкорость второго автобуса равна:
V2=132/(t+1 12/60)
Скорость сближения автобусов равна:
132/(t+50/60)+132/(t+1 12/60)=132/t
132/(t+5/6)+132/(t+1,2)=132/t приведём уравнение к общему знаменателю (t)*(t+5/6)*(t+1,2)
t*(t+1,2)*132+t*(t+5/6)*132=(t+5/6)*(t+1,2)*132
132t²+158,4t+132t²+110t=(t²+5/6*t+1/2t+1)*132
132t²+158,4t+132t²+110t=132t²+110t+158,4t+132
132t²+158,4t+132t²+110t-132t²-110t-158,4t-132=0
132t²-132=0
132t²=132
t²=132/132
t²=1
t=√1
t=1
Отсюда:
-скорость первого автобуса равна: V1=132/(1+50/60)=132/(1+5/6)=
=132/(11/6)=72(км/час)
-скорость второго автобуса равна: V2=132/(1+1 12/60)=132/(1+1,2)=132/2,2=60(км/час)
ответ: скорость первого автобуса 72км/час; скорость второго автобуса 60км/час