Прямые пересекаются тогда когда они не параллельны, прямые параллельны тогда когда коэффициенты к1=к2,где у1=к1х+в; у2=к2х+в
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)
{x²-y²>0;
{x+y>0
{lg(x^2-y^2)-lg(x+y) =0
{4·(x²+y²)=20
{lg(x²-y²)=lg(x+y)
{x²+y²=5
{x²-y²=x+y
{x²+y²=5
{(x-y)(x+y)-(x+y)=0
{x²+y²=5
{(x+y)(x-y-1)=0
{x²+y²=5
Система заменяется совокупностью двух систем:
{x+y =0 или {х - у - 1=0
{x²+y²=5 или {x²+y²=5
Решаем первую систему подстановки
{y=-x
{2x²=5
{x₁=-√2,5 {x₂=√2,5
{y₁=√2,5 {y₂=-√2,5
х₁-y₁=0
х₂²-у₂²=0
решения системы не удовлетворяют ОДЗ
Решаем вторую систему подстановки
{y=x-1
{x²+(x-1)²=5
x²+x²-2x+1=5
2x²-2x-4=0
x²-x-2=0
{x₃=-1 { x₄=2
{y₃=-2 {y₄=1
х₃²-у₃²=(-1)²-(-2)²<0 не удовлетворяет ОДЗ
О т в е т. (2;1)
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)