sin(6x - π/3)=sin(2x + π/4)
ответ: 7π/4 +(π/2)*n n ∈ ℤ . π/6 +(π/4)* k , k ∈ ℤ.
Объяснение:
sin(6x - π/3) = sin(2x + π/4)
(6x - π/3) - (2x+ π/4) = 2πn ⇒ x = 7π/4 +(π/2)*n , n ∈ ℤ.
(6x - π/3) + (2x+ π/4) = π+ 2πk ⇒ x = π/6 +(π/4)* k , k ∈ ℤ.
P.S. * * * * * * * * * * * * * * * * * * * * * * * * * * *
sinα=sinβ ⇔sinα- sinβ =0 ⇔2(sin(α- β)/2) )* ( cos(α+ β)/2) )=0.
sin(α - β)/2 =0 ⇒ (α- β)/2 = π*n ⇔ α- β = 2π*n ;
cos(α+ β)/2 =0 ⇒(α + β)/2 = π/2 +π*k⇔ α + β =π +2π*k . || (2k+1)π ||
sin(6x - π/3)=sin(2x + π/4)
ответ: 7π/4 +(π/2)*n n ∈ ℤ . π/6 +(π/4)* k , k ∈ ℤ.
Объяснение:
sin(6x - π/3) = sin(2x + π/4)
(6x - π/3) - (2x+ π/4) = 2πn ⇒ x = 7π/4 +(π/2)*n , n ∈ ℤ.
(6x - π/3) + (2x+ π/4) = π+ 2πk ⇒ x = π/6 +(π/4)* k , k ∈ ℤ.
P.S. * * * * * * * * * * * * * * * * * * * * * * * * * * *
sinα=sinβ ⇔sinα- sinβ =0 ⇔2(sin(α- β)/2) )* ( cos(α+ β)/2) )=0.
sin(α - β)/2 =0 ⇒ (α- β)/2 = π*n ⇔ α- β = 2π*n ;
cos(α+ β)/2 =0 ⇒(α + β)/2 = π/2 +π*k⇔ α + β =π +2π*k . || (2k+1)π ||