Замечаем что все показатели степени нечетные числа, а значит если х отрицательное, то и его степень число отрицательное
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных) Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит Если 0<x<1то для каждой степени а значит л.ч. < --(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1 иначе для суммы первых натуральных чисел справедлива формула )
При x=1 Получаем равенство 1+2+...+20=210 x=1 - решение
и При x>1 получаем что л.ч. больше правой так как и л.ч. > ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
Поэтому если х отрицательное то слева число отрицательное (как сумма отрицательных)
Если х=0, то в левой части уравнения очевидно 0. Этот случай тоже не подходит
Если 0<x<1то
для каждой степени
а значит л.ч. <
--(использовали формулу арифмитической прогрессии с первым членом 1 и разностью 1
иначе для суммы первых натуральных чисел справедлива формула
)
При x=1
Получаем равенство 1+2+...+20=210
x=1 - решение
и При x>1 получаем что л.ч. больше правой так как
и л.ч. >
ответ: 1
Пусть a, b, t — возраст Ани, Вани, мамы сейчас. Тогда b-a лет назад Ваня был в возрасте Ани и в это времяa-(b-a) — возраст Ани,b-(b-a) — возраст Вани,t-(b-a) — возраст мамы.Из первого условия задачи следует уравнениеt-(b-a)=a+b-3с решениемt=2b-3, показывающим зависимость возраста мамы от возраста Вани.Осталось решить еще одно уравнение, вытекающее из заключительного условия задачиb=2b-3,с решением b=3. К последнему условию можно сделать содержательное пояснение: b-3 года назад возраст мамы действительно составлял возраст Вани сейчасt-(b-3)=2b-3 — (b-3) = bа возрвст Ваниb — (b-3) = 3.
III. Формулювання мети і завдань уроку
Формулюємо проблему: як знайти значення виразу
.
де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0
та знайдіть суму і добуток його коренів.
2. Наведіть приклад квадратного рівняння, в якого:
а) один корінь дорівнює нулю, а другий — не дорівнює нулю;
б) обидва корені дорівнюють нулю;
в) немає дійсних коренів;
г) корені — протилежні ірраціональні числа.
3. Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює