Пусть скорость пешехода х км/ч Тогда расстояние от А до В 3*х Время, затраченное им на обратный путь 16:х + (3х -16):(х-1) 16:х + (3х -16):(х-1) =3 +1/15 16:х + (3х - 16):(х-1) =46/15 умножим обе части уравнения на 15х(х-1), чтобы избавиться от дробей. 16*15(х-1) +15х (3х - 16)=46 х(х-1)240х-240 +45х²-240х=46х² -46х46х² -45х² -46х +240 =0 х² - 46х +240 =0D = b 2 - 4ac = 1156 √D = 34 х₁=40 ( не подходит для скорости пешехода) х₂=6 км/чS=vt=6*3=18 кмПроверка 16:6 + 2:5= 8/3+ 2/5= 40/15 +6/15=46/15=3 и 1/15 часа3 и 1/15 -3= 1/15 =4 минуты
2) приравниваем её к 0 и решаем уравнение;
3) смотрим, какие корни попали в указанный промежуток и ищем значения функции в этих точках и на концах промежутка;
4) пишем ответ.
Поехали?
1) у' = 3x^2 +2x -8
2) 3x^2 +2x -8 = 0
x1= -2 ( входит в промежуток) x2 = 4/3 (не входит в промежуток)
3)у(-3) = (-3)^3 + (-3)^2 -8*(-3) -8 = -27 +9 +24 -8 = -2
y(0) = 0^3 +0^2 -8*0 -8 = -8
y(-2) = (-2)^3 +(-2)^2 -8*(-2) -8 = -8 +4 +16 -8 = 4
4) ответ: max y = y(-2) = 4
Тогда расстояние от А до В
3*х
Время, затраченное им на обратный путь
16:х + (3х -16):(х-1)
16:х + (3х -16):(х-1) =3 +1/15
16:х + (3х - 16):(х-1) =46/15
умножим обе части уравнения на 15х(х-1), чтобы избавиться от дробей.
16*15(х-1) +15х (3х - 16)=46 х(х-1)240х-240 +45х²-240х=46х² -46х46х² -45х² -46х +240 =0
х² - 46х +240 =0D = b 2 - 4ac = 1156
√D = 34
х₁=40 ( не подходит для скорости пешехода)
х₂=6 км/чS=vt=6*3=18 кмПроверка
16:6 + 2:5= 8/3+ 2/5= 40/15 +6/15=46/15=3 и 1/15 часа3 и 1/15 -3= 1/15 =4 минуты