Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).
№4.
а)
y = 37x+1; E(y)=(-∞;+∞)
б)
y = -23; E(y) = -23
в)
y = x; E(y) = (-∞;+∞)
г)
y = |x|; E(y) = [0;+∞)
Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).
ответы на вопросы:
1. Графиком квадратичной функции является парабола.
2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: , ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.
3. Направление ветвей зависит от старшего коэффициента.
Если a<0, то ветви направлены вниз;
Если a>0, то ветви направлены вверх.
4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет
5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.
Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).
Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.
Поначалу вспомним определение пересечения и найдем его: Пересечение множеств - это такое множество для всех x, так что, x в А и в В одновременно. Т.е. в нашем случае, там где черный и красный цвет пересекается (один находиться над другим) и является искомым пересечением:
Теперь, основываясь на данном полу-отрезке, мы найдем объединение с С.
Опять же, вспомни определение: Объединение - это такое множество всех x, так что, x либо в [2,4) либо в С, или в [2,4) и в С одновременно.
№1.
№2.
ответ:
№3.
а)
f(x) = 19-2x; D(f) = (-∞;+∞)
б)
g(x) = x+1; D(g) = (-∞;+∞)
в)
y(x) = √x; D(y) = [0;+∞)
г)
y = x²-4; D(y) = (-∞;+∞)
Область определения линейных функций (пункты а и б) и квадратных (пункт г) ничто не ограничивает. А вот для квадратного корня есть ограничения - подкоренное выражение не может быть отрицательным (в пункте в) x ≥ 0).
№4.
а)
y = 37x+1; E(y)=(-∞;+∞)
б)
y = -23; E(y) = -23
в)
y = x; E(y) = (-∞;+∞)
г)
y = |x|; E(y) = [0;+∞)
Для линейной функция вида y=kx+b, k≠0, множество значений все действительные числа (пункты а и в). Для линейной функции вида y=b, b - константа, множество значений и есть число b, оно неизменно (пункт б). Множество значений модуля, все неотрицательные числа (пункт г).
ответы на вопросы:
1. Графиком квадратичной функции является парабола.
2. Привести функцию к виду f(x) = ax²+bx+c, абсцисса вершины: , ордината вершины: y₀ = f(x₀) - надо подставить значение x₀ в квадратичную функцию.
3. Направление ветвей зависит от старшего коэффициента.
Если a<0, то ветви направлены вниз;
Если a>0, то ветви направлены вверх.
4. Да, любая парабола имеет ось симметрии, для графика функции y=ax²+bx+c, ось симметрии будет
5. Определяем координаты вершины парабола и направление ветвей. Если вершина ниже оси Ox, а ветви направлены вниз ИЛИ вершина выше оси Ox, а ветви направлены вверх, то искать нули функции (x, при которых график функции пересекает ось Ox) не надо. В остальных двух случаях, находим нули функции.
Составляем таблицу точек, для таких x, что не очень далеко от абсциссы вершины. И заодно находим координаты точки пересечения графика с осью Oy (x=0).
Отмечаем точки из таблицы и вершину на координатной плоскости и проводим параболы, подписываем координаты точек пересечения графика с ось Ox.
Поначалу вспомним определение пересечения и найдем его:
Пересечение множеств - это такое множество для всех x, так что, x в А и в В одновременно.
Т.е. в нашем случае, там где черный и красный цвет пересекается (один находиться над другим) и является искомым пересечением:
Теперь, основываясь на данном полу-отрезке, мы найдем объединение с С.
Опять же, вспомни определение:
Объединение - это такое множество всех x, так что, x либо в [2,4) либо в С, или в [2,4) и в С одновременно.
Т.е. на рисунке это весь отрезок от 2 до 7.