p на время приравнивается к 0. Это квадратное уравнение, значит.
а) Чтобы данное уравнение не имело корней нужно, чтобы дискриминант был меньше 0.
D = b² - (c*a*4) b² = 36, значит (c*a*4) должен быть больше 36 и главное положительным. c*a*4 = -2*-1*4= 8 p должно быть таким числом, чтобы прибавление к -2 в данном выражении могло получится больше 36. 36:4:-1 = - 9 -9 -( -2) = 7
А) (а+7)(а-8)>(a+12)(a-13) a²+7a-8a-56>a²+12a-13a-156 a²-a-56>a²-a-156 a²-a²-a+a-56>-156 -56>-156 Что и требовалось доказать
б) (а-9)-12<(a-6)(a-12) a-9-12<a²-6a-12a+72 a-21<a²-18a+72 -a²+a+18a-21-72<0 -a²+19a-93<0 a²-19a+93>0 График у=а²-19а+93 - парабола, ветви направлены вверх а²-19а+93=0 Д=19²-4*93=361-372=-11 График функции не пересекает ось ОХ и находится выше оси ОХ. Значит а²-19а+93>0 при любых а. Отсюда начальное неравенство выполняется при любом а.
а∈(-0,71; 3,4) Получается, что исходное неравенство не выполняется при любом а. Проверка: пусть а =-1 (4*(-1)+3)(4*(-1)+5)-(5*(-1)-2)<14(5*(-1)+4) (-4+3)(-4+5)-(-5-2)<14(-5+4) -1*1+7<14*(-1) 6<-14 - неверно
p на время приравнивается к 0.
Это квадратное уравнение, значит.
а) Чтобы данное уравнение не имело корней нужно, чтобы дискриминант был меньше 0.
D = b² - (c*a*4)
b² = 36, значит (c*a*4) должен быть больше 36 и главное положительным.
c*a*4 = -2*-1*4= 8
p должно быть таким числом, чтобы прибавление к -2 в данном выражении могло получится больше 36.
36:4:-1 = - 9
-9 -( -2) = 7
Проверка:
-x² + 6x - 2 = 7
-x² + 6x - 2-7 = 0
-x² + 6x - 9= 0
D = 36 - (-9*-1*4) = 36 - 36 =0
Значит p должен быть больше 7.
б)Чтобы данное уравнение имело один корень, дискрименант должен быть равен 0.
D = b² - (c*a*4)
b² = 36, значит (c*a*4) должен быть равно 36 и главное положительным.
c*a*4 = -2*-1*4= 8
36:4:-1 = - 9
-9 -( -2) = 7
Проверка:
-x² + 6x - 2 = 7
-x² + 6x - 2-7 = 0
-x² + 6x - 9= 0
D = 36 - (-9*-1*4) = 36 - 36 = 0
p = 7
в) Чтобы уравнение имело 2 корня, дискриминант должен быть больше 0.
p не может быть равно 7или быть больше 7, а так любое другое число
-x²+6x-2=p
D = b² - (c*a*4) = 36 - 8 = 28, если p=0
a²+7a-8a-56>a²+12a-13a-156
a²-a-56>a²-a-156
a²-a²-a+a-56>-156
-56>-156
Что и требовалось доказать
б) (а-9)-12<(a-6)(a-12)
a-9-12<a²-6a-12a+72
a-21<a²-18a+72
-a²+a+18a-21-72<0
-a²+19a-93<0
a²-19a+93>0
График у=а²-19а+93 - парабола, ветви направлены вверх
а²-19а+93=0
Д=19²-4*93=361-372=-11
График функции не пересекает ось ОХ и находится выше оси ОХ.
Значит а²-19а+93>0 при любых а.
Отсюда начальное неравенство выполняется при любом а.
в) (4а+3)(4а+5)-(5а-2)<14(5a+4)
16a²+12a+20a+15-5a+2<70a+56
16a²+27a-70a+17-56<0
16a²-43a-39<0
График у=16а²-43а-39 - парабола, ветви направлены вверх
16а²-43а-39=0
Д=43²-4*16*(-39)=1849+2496=4345≈65,91²
а₁=43-65,91≈-0,71
32
а₂=43+65,91≈3,4
32
+ - +
-0,71 3,4
а∈(-0,71; 3,4)
Получается, что исходное неравенство не выполняется при любом а.
Проверка: пусть а =-1
(4*(-1)+3)(4*(-1)+5)-(5*(-1)-2)<14(5*(-1)+4)
(-4+3)(-4+5)-(-5-2)<14(-5+4)
-1*1+7<14*(-1)
6<-14 - неверно