Рассмотрим треугольник COD. Диагонали ромба перпендикулярны, следовательно это прямоугольный треугольник и ∠O = 90°, стороны треугольника OC и OD - составляют половину диагоналей, получается OC = 4√3, а OD = 4, по теореме Пифагора находим гипотенузу и получаем CD=8. По теореме косинусов выражаем угол СDO =(OD^2+CD^2-OC^2)/ 2*CD*OD = (4^2 + 8^2 - (4√3)^2)/ 2*8*4 = 0.5.
cos 0.5 = 1/2 =60°. Получается ∠CDO 60°. Диагонали ромба являются биссектрисами, следовательно ∠D=60*2=120°. Сумма углов ромба прилегающих к одной стороне равна 180°, следовательно ∠C=180-120=60°
Х² + 9х = 0
I.Рациональный решения.
Вынести общий множитель за скобку:
х * (х + 9 ) = 0
Произведение = 0 , если один из множителей =0.
х₁= 0
х + 9=0
х₂= -9
II. Решение через дискриминант [ D= b² -4ac ]
Стандартный вид квадратного уравнения:
х² + 9х + 0 =0
а = 1 ; b= 9 ; с = 0
D = 9² - 4*1*0 = 9²
D>0 - два корня уравнения [ х₁,₂ = (-b ⁺₋ √D)/2a ) ]
х₁ = ( - 9 + √9²) /(2*1) = (-9 + 9)/2 = 0/2 = 0
x₂ = ( - 9 - √9²) /(2*1) = (-9 - 9)/2 = -18/2 = - 9
ответ: ( - 9 ; 0 ) .
Объяснение:
60° и 120°
Объяснение:
Рассмотрим треугольник COD. Диагонали ромба перпендикулярны, следовательно это прямоугольный треугольник и ∠O = 90°, стороны треугольника OC и OD - составляют половину диагоналей, получается OC = 4√3, а OD = 4, по теореме Пифагора находим гипотенузу и получаем CD=8. По теореме косинусов выражаем угол СDO =(OD^2+CD^2-OC^2)/ 2*CD*OD = (4^2 + 8^2 - (4√3)^2)/ 2*8*4 = 0.5.
cos 0.5 = 1/2 =60°. Получается ∠CDO 60°. Диагонали ромба являются биссектрисами, следовательно ∠D=60*2=120°. Сумма углов ромба прилегающих к одной стороне равна 180°, следовательно ∠C=180-120=60°