1) Непонятно, 2*корень из 3 в входит в степень числа 7 или нет 2) При каких целых значениях а квадратное уравнение ax^2+24x+11=0 D=576-44a>0 44a<576 a<144/11 - при таких а корни есть вообще делаем уравнение приведенным x^2+24/ax+11/a=0 Чтобы сумма рациональных корней была целой, нужно чтобы -24/а - было целым, по теореме Виета возможные варианты: а=+-24;+-4;+6;+-8;+-12 вариант +-1 отпадает, т.к. тогда дискриминант не будет полным квадратом D=576-44a подбираем а, когда D - полный квадрат +-24 - нет, -4 - нет, +-6 - нет, +-8 -нет, +-12 -нет остается а=4 при а=4 это квадратное уравнение имеет рациональные корни, сумма которых целое число 3) возможно опечатка: либо 3^32 либо 2^30
х1+х2=5 у1+у2=-8 D=9+4*4*7=121=11²
х1*х2=6 у1*у2=16 х1=(3+11)/14=1 х1=1
х1=3 у1=4 х2=(3-11)/14=8/14=4/7 х2=4/7
х2=2 у2=4
8х²+5х-3=0
D=25+4*3*8=121=11²
х1=(-5+11)/16=6/16=3/8 х1=3/8
х2=(-5-11)/16=-1 х2=-1
2) При каких целых значениях а квадратное уравнение
ax^2+24x+11=0
D=576-44a>0
44a<576
a<144/11 - при таких а корни есть вообще
делаем уравнение приведенным
x^2+24/ax+11/a=0
Чтобы сумма рациональных корней была целой, нужно чтобы -24/а - было целым, по теореме Виета
возможные варианты:
а=+-24;+-4;+6;+-8;+-12
вариант +-1 отпадает, т.к. тогда дискриминант не будет полным квадратом
D=576-44a
подбираем а, когда D - полный квадрат
+-24 - нет, -4 - нет, +-6 - нет, +-8 -нет, +-12 -нет
остается а=4
при а=4 это квадратное уравнение имеет рациональные корни, сумма которых целое число
3) возможно опечатка: либо 3^32 либо 2^30