я объясню короткий есть одно свойство когда двв модуля находятся в левой части, а справа какое-то уравнение итак,, 1)нужно отбросить модули.., 2)дальше, нужно один раз прибавить, и один раз отнять модули, а уравнение в правой части оставить без изменения...
нам нужно, чтобы левая часть равнялась правой части а это можно увидеть в первой частиесли части равны то решением уравнения будет система неравенств: x^2-9>=0 x+3>=0
ответ будет их пересечение, то есть [3;+бесконеч.)
П.С: но а если при вычитавнии мы получили бы что обе части равны то решением уравнения будет система неравенств: x^2-9>=0 x+3<=0
log a (a^2/b) log a (a^2) - log a (b)
5log (b^2)/a (a^2/b)= 5· = 5· =
log a (b^2)/a log a (b^2)-log a (a)
2- 3 (-1)
= 5 = 5 = -1
2·3 -1 5
2) log 2 (a^1/3) , если log 4 (a^3)=9
log 4 (a^3)=9 ⇔3 log 4 (a)=9 ⇔ log 4 (a)=3
log 4 (a^1/3) (1/3)log 4 (a) 1log 2 (a^1/3) = = = = 2
log 4 (2) log 4 (√4) 1/2
3) lg2.5 если log 4(125) = a
log 4(125) = a ⇔ log 4(5³) =3 log 4(5) =a ⇔ log 4(5)=a/3
log 4 (5/2) log 4 (5)-log 4 (2) a/3-1/2 2a-3lg2.5 = = = =
log 4 (5·2) log 4 (5) +log 4 (2) a/3 +1/2 2a+3
1 длинный, 2 короткий
я объясню короткий есть одно свойство когда двв модуля находятся в левой части, а справа какое-то уравнение
итак,, 1)нужно отбросить модули..,
2)дальше, нужно один раз прибавить, и один раз отнять модули, а уравнение в правой части оставить без изменения...
x^2-9+x+3=x^2+x-6. x^2-9-x-3=x^2+x-6
x^2+x-6= x^2+x-6. x^2-x-12= x^2+x-6
нам нужно, чтобы левая часть равнялась правой части
а это можно увидеть в первой частиесли части равны то решением уравнения будет система неравенств:
x^2-9>=0
x+3>=0
ответ будет их пересечение, то есть [3;+бесконеч.)
П.С: но а если при вычитавнии мы получили бы что обе части равны то решением уравнения будет система неравенств:
x^2-9>=0
x+3<=0