В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
lev0505805
lev0505805
23.01.2020 09:25 •  Алгебра

Решить уравнения высших степеней (2x+8)^2(13x-39)=26(4x^2-64)(x-3) (x^2-6x)^2-2(x-3)^2=81

Показать ответ
Ответ:
gopd2
gopd2
15.07.2020 07:51
Предлагаю свой вариант решений
0,0(0 оценок)
Ответ:
София5778
София5778
15.07.2020 07:51
1) (2x+8)^2(13x-39)=26(4x^2-64)(x-3)
(2(x+4))^2*13(x-3)=26*4*(x^2-16)(x-3)⇒
4(x+4)^2*(x-3)=2*4*(x-4)(x+4)(x-3)⇒
(x+4)^2*(x-3)-2*(x-4)(x+4)(x-3)=0⇒(x+4)(x-3)(x+4-2x+8)=0⇒
(x+4)(x-3)(12-x)=0⇒x1=-4; x2=3; x3=12
2)(x^2-6x)^2-2(x-3)^2=81⇒
(x^2-6x)^2-2(x^2-6x+9)=81
Замена: x^2-6x=t
t^2-2(t+9)-81=0⇒t^2-2t-99=0⇒
t1=1+√1+99=1+10=11;
t2=1-√1+99=1-10=-9
1) x^2-6x=11⇒x^2-6x-11=0⇒x=3+(-)√9+11
x1=3+√20=3+2√5
x2=3-2√5
2)
x^2-6x=-9⇒x^2-6x+9=0⇒(x-3)^2=0⇒x=3
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота