Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
Область определения функции - все числа кроме - 3 и 2.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
f(x) = ( x - 5 ) / ( x² + x - 6 )
Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
Область определения функции - все числа кроме - 3 и 2.
Математически это записывается так:
x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ ).