23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
‥・Здравствуйте, tima0604! ・‥
• ответ:
Упрощённым выражением данного примера является решение -11+√21. (Альтернативный Вид: ≈ -6,41742.)
• Как и почему?
Для того, чтобы нам проверить правильность нашего ответа, то мы должны делать следующее:
• 1. Упростить корень √12: (√7-2√3)×(√7+3√3).
• 2. Перемножить выражения в скобках, то есть, раскрыть их: 7+3√21-2√21-18.
• 3. Вычислить разность чисел 7 и 18: 7-18=-11 → -11+3√21-2√21.
• 4. Привести подобные члены 3√21 и 2√21: -11+√21.
• Вывод: Таким образом, у нас в ответе получается корень -11+√21, а Альтернативный Вид этого корня является примерно -6,41742.
‥・С уважением, Ваша GraceMiller! :) ・‥