Зависимость двух величин является обратной пропорциональностью, если их произведение является постоянным числом, отличным от нуля ( при увеличении одной переменной в несколько раз вторая уменьшается в такое же число раз).
Общий вид формул прямой пропорциональности у = k•x, где к - произвольное число, а х и у - переменные.
Общий вид формул обратной пропорциональности у = k/x, где к - отличное от нуля число, а х и у - переменные.
ab=56 - обратно пропорциональные величины а и b.
b=n:7, n = 7•b - прямо пропорциональные величины.
a=8•b - прямо пропорциональные величины.
b=7:n, b•n = 7 - обратно пропорциональные величины.
a=b8, а = 8•b - прямо пропорциональные величины.
56a=b, b = 56•a - прямо пропорциональные величины.
Видно, что это дробно-линейная функция, графиком которой является гипербола.
Свойства функции: 1) D(f) = ( - оо ; 4 ) U ( 4 ; + оо ) 2) E(f) = ( - оо ; 1 ) U ( 1 ; + оо ) Ассимптоты: x = 4 и y = 1 3) Наименьшего и наибольшего значений функция не имеет 4) Функция принимает значение 0 при x= - 2. 5) функция убывает на интервале ( - оо ; 4 ) U ( 4 ; + оо ) 6) функция < 0 на интервале ( -2 ; 4) ; функция > 0 на интервале ( - oo ; -2 ) U ( 4 ; + оо )
ab=56; b=7:n.
Объяснение:
Зависимость двух величин является обратной пропорциональностью, если их произведение является постоянным числом, отличным от нуля ( при увеличении одной переменной в несколько раз вторая уменьшается в такое же число раз).
Общий вид формул прямой пропорциональности у = k•x, где к - произвольное число, а х и у - переменные.
Общий вид формул обратной пропорциональности у = k/x, где к - отличное от нуля число, а х и у - переменные.
ab=56 - обратно пропорциональные величины а и b.
b=n:7, n = 7•b - прямо пропорциональные величины.
a=8•b - прямо пропорциональные величины.
b=7:n, b•n = 7 - обратно пропорциональные величины.
a=b8, а = 8•b - прямо пропорциональные величины.
56a=b, b = 56•a - прямо пропорциональные величины.
Т.о наша функция теперь имеет вид:
Видно, что это дробно-линейная функция, графиком которой является гипербола.
Свойства функции:
1) D(f) = ( - оо ; 4 ) U ( 4 ; + оо )
2) E(f) = ( - оо ; 1 ) U ( 1 ; + оо )
Ассимптоты: x = 4 и y = 1
3) Наименьшего и наибольшего значений функция не имеет
4) Функция принимает значение 0 при x= - 2.
5) функция убывает на интервале ( - оо ; 4 ) U ( 4 ; + оо )
6) функция < 0 на интервале ( -2 ; 4) ;
функция > 0 на интервале ( - oo ; -2 ) U ( 4 ; + оо )