В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
FraGamer228
FraGamer228
12.04.2020 02:04 •  Алгебра

Решить методом индукции: -1+3-5++)^n)*(2n-1)=)^n)*n

Показать ответ
Ответ:
Khayalnuriev2005
Khayalnuriev2005
07.08.2020 08:49
-1+3-5+,,,+((-1)^n)*(2n-1)=((-1)^n)*n

1) Пусть n=1

((-1)^1*(2*1-1)=((-1)^1*1)

(-1*1)=(-1*1)

-1=-1

Равенство верное

2) Предположим что равенство верное при n=k

-1+3-5+...+((-1)^k*(2k-1))=((-1)^k*k)

Докажем что оно верно для n=k+1

Рассмотрим  левую часть равенства:
-1+3-5+...+((-1)^k*(2k-1))+((-1)^{k+1}*(2(k+1)-1))=

=(-1)^k*k+(-1)^k*(-1)*(2k+2-1)=(-1)^k*k-(-1)^k(2k+1)=

=(-1)^k*(k-(2k+1))=(-1)^k*(k-2k-1)=-(-1)^k(k+1)



Рассмотрим правую часть равенства:

(-1)^{k+1}*(k+1)=(-1)^k*(-1)*(k+1)=-(-1)^k*(k+1)

Правая и левая части равны.

Таким образом, из условия, что это равенство справедливо при k вытекает, что оно справедливо и при  k + 1, значит оно справедливо при любом натуральном n, что и требовалось доказать.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота