Решить 3 номера. (534,535,536) полностью меня учили так сначала пишем чему равен а,б и,
с и пишем формулу дискримината и первого корня и второго,и в ответе пишем наименьший и наибольший и решение. это полные уравнения. и распишите на листочке кто решит поставлю ваш пример лучше, решить ваш пример и поставлю 60 .
1. Область определения функции: х ∈ (-∞, ∞).
2. Четность, нечетность функции проверяем с соотношений
f = f(-x) и f = -f(-x).
x^{3} - 3 x^{2} + 4 = - x^{3} - 3 x^{2} + 4.
- Нет.
x^{3} - 3 x^{2} + 4 = - -1 x^{3} - - 3 x^{2} - 4.
- Нет.
Значит, функция не является ни чётной, ни нечётной.
3. Координаты точек пересечения графиков функции с осью Ох и осью Оy.
График функции пересекает ось X при f = 0
значит надо решить уравнение x³ - 3 x² + 4 = 0.
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение даёт 3 действительных корня (из них 2 одинаковых): х = 2 и х = -1.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x³ - 3x² + 4.
0³ - 3*0² + 4.
Результат: f(0) = 4.
Точка (0, 4).
4. Промежутки возрастания убывания функции, экстремумы функции.
Для того, чтобы найти экстремумы, нужно решить уравнение
\frac{d}{d x} f{\left (x \right )} = 0 (производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
\frac{d}{d x} f{\left (x \right )} =
Первая производная 3 x^{2} - 6 x = 0.
Корни этого уравнения
x_{1} = 0.
x_{2} = 2.
Значит, экстремумы в точках:
(0, 4)
(2, 0)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках x_{2} = 2.
Максимумы функции в точках x_{2} = 0.
Убывает на промежутках (-oo, 0] U [2, oo)
Возрастает на промежутках [0, 2]
5. Промежутки выпуклости функции
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная 6 \left(x - 1\right) = 0.
Корни этого уравнения x_{1} = 1.
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [1, oo).
Выпуклая на промежутках (-oo, 1].
6. асимптоты графика - не имеет.
7. Построение графика - дан в приложении.
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное)
Применим метод Эйлера
Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение
Корни которого
Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное)
отсюда
где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
уч.н.
Запишем общее решение исходного уравнения
- ответ