В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ochvv15owqbd0
ochvv15owqbd0
02.10.2022 12:26 •  Алгебра

Размер актива(в млрд тг), количество фирм (n), найти n2, размах ряда, моду и т.д. Остальное во вложении


Размер актива(в млрд тг), количество фирм (n), найти n2, размах ряда, моду и т.д. Остальное во вложе

Показать ответ
Ответ:
ДарьяМайер5554
ДарьяМайер5554
02.05.2020 03:12
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса: Не имеют корней; Имеют ровно один корень; Имеют два различных корня. В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.ДискриминантПусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно: Если D < 0, корней нет; Если D = 0, есть ровно один корень; Если D > 0, корней будет два.
0,0(0 оценок)
Ответ:
lida105
lida105
08.03.2020 03:28
Если раскрыть скобки и привести подобные, то получим:
9х⁴+66х³-60х²-44х+4 = 0.
 Корни уравнения n-ой степени могут быть найдены с любой наперед заданной точностью при численных методов. В данном случае применено решение уравнения 4 степени одним из таких методов, а именно: методом Лягерра (Laguerre).
Изначально задаётся требуемую точность нахождения корней и максимальное количество итераций, которое предполагается при этом затратить.

Требуемая точность нахождения корней:                      1e-3                     1e-4                     1e-5                     1e-6                     1e-7                     1e-8                     1e-9                     1e-10                     1e-11                     1e-12                     1e-13                     1e-14                  . Максимальное число итераций:                      30                     50                     100                     150                     200                 .


ответ:
Корни полинома
9x4 + 66x3 − 60x2 − 44x + 4 = 0
равны:
x1 ≈ −8.08248290463863P(x1) ≈ 0iter = 1
x2 ≈ −0.548583770354863P(x2) ≈ 0iter = 4
x3 ≈ 0.0824829046386294P(x3) ≈ 0iter = 3
x4 ≈ 1.21525043702153P(x4) ≈ 0iter = 1
В результате получаем 4 корня:
х₁ = -8,08248
х₂ = -0,548584
х₃ = 0,0824829
х₄ = 1,21525.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота