Разложить на множители 1) а) a(x+y) +a(b-x) = б) b(2x-5y)-b(3x-y)= в)2c(a+b)+c(5a-3b)= г)x в квадрате(2x+7y)-x в квадрате(3x-5y)= 2) a(b+c) +x(b+c) = б) a(3b+c)-x(3b+c)= в) 3y(2x-9)-5(2x-9)= г) 2a(3x+1)+(3x+1)= 3) a) k(x-y)+c(y-x )= б) 3p(a--a)= в) 2p(a-x)-p(x-a)= г) (y-a)+b(a-y) =
Число (-103) не является членом данной арифметической прогрессии.
Объяснение:
1) d = (a₅ - a₁) : 4 = (3 - 31) : 4 = - 28 : 4 = - 7
2) Если число (-103) является членом данной прогрессии, то разность между этим числом и пятым членом прогрессии должна быть кратна d, то есть делиться нацело на d:
а) - 103 - 3 = -106
б) 106 без остатка на 7 не делится; следовательно, число (-103) не является членом данной арифметической прогрессии.
ответ: число (-103) не является членом данной арифметической прогрессии.
Объяснение:
Уравнение касательной к графику функции f(x) в точке х = х0 имеет следующий вид:
у = f'(x0) * (х - х0) + f(x0).
Найдем производную функции f(x) = x² + 2:
f'(x) = (x² + 2)' = 2x.
Найдем значение производной функции f(x) = x² + 2 в точке х0 = 1:
f'(1) = 2 * 1 = 2.
Найдем значение функции f(x) = x² + 2 в точке х0 = 1:
f(1) = 1² + 2 = 1 + 2 = 3.
Составляем уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1:
у = 2 * (х - 1) + 3.
Упрощая данное уравнение, получаем:
у = 2х - 2 + 3;
у = 2х + 1.
ответ: уравнение касательной к графику функции f(x) = x² + 2 в точке х0 = 1: у = 2х + 1.