Расстояние s, пройденное трактором (в метрах), моделируется уравнением s = 0,1t ^ 2 + 5t, где t - время, затрачиваемое трактором на прохождение этой дороги. а) Напишите уравнение скорости трактора. б) Используя это уравнение, определите, когда скорость трактора составляет 8 м / с.
какие огромные числа.. навремя сократим количество нулей на пять)
Пусть президент получает 10, заместители 2, а служащие 1.
Найдем среднее арифметическое:
(10+4*2+20*1)/1+4+20=38\25=1.52
Найдем моду, но тут думаю понятно что мода это 1.
Найдем медиану, для этого выпишем все данные в порядке возрастания и попарно будем зачеркивать наибольшее число и наименьшее, тем самым подбираясь к середине.
Если в середине останется 1 число - оно и будет модой, если останется пара чисел - модой будет их среднее арифметическое.
Медиана здесь тоже равна 1.
Не забываем добавить к ответу пять нулей и получаем:
Ср.Арифметическое - 152000р
Мода - 10000р
Медиана - 10000
Сторона квадрата АВ = 8 см, ВР = ВЕ = 3 см. Поскольку КРЕМ - трапеция, то КМ параллельно РЕ, поэтому DK = DM = x.
Длина одного основания РЕ = 3*корень(2), длина другого КМ = х*корень 2, меняется от 8*корень 2 до 0.
Диагональ квадрата АС = BD = 8*корень(2).
Точки К и М в одном крайнем положении совпадают с А и С, в другом - обе совпадают с D, тогда трапеция вырождается в треугольник. Два крайних положения показаны на
Длина BN = PN = EN = 3*корень(2)/2. Длина DF = KF = MF = x*корень(2)/2. Длина OB = BD/2 = 4*корень(2)
Высота трапеции FN = BD - BN - DF = 8*корень(2) - 3*корень(2)/2 - x*корень(2)/2.
Площадь трапеции
S = (PE + KM) * FN / 2 = (3*корень(2) + х*корень(2)) * (8*корень(2) - 3*корень(2)/2 - x*корень(2)/2) / 2
S = корень(2) * (3 + x) * корень(2) * (8 - 3/2 - x/2) / 2 = (3 + x)(16 - 3 - x)/2 = (3 + x)(13 - x)/2 -> max
Неожиданно простая функция получилась. Дальше находим производную, и приравниваем к 0.
S ' = [ (13 - x) - (3 + x) ] / 2 = (10 - 2x) / 2 = 5 - x = 0
x = 5
ответ: точки К и М должны быть на расстоянии 5 см от точки D.