Объяснение:
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним.
2. При делении степеней с одинаковыми основаниями основание остаётся прежним, а из показателя числителя вычитают показатель знаменателя.
3.При возведении степени в степень основание остаётся прежним а показатели перемножают.
4. При возведении в степень произведения, возводят в эту степень каждый множитель и результаты перемножают.
5. Степень числа а не равного нулю с нулевым показателем равна 1
В решении.
По заданному графику определите:
а) область определения функции;
Область определения - это значения х, при которых функция существует. Обозначение D(f) или D(у).
Согласно графика, данная функция существует от х= -5 до х=6.
Кружок у х= -5 закрашен, значит, точка принадлежит числовому промежутку, скобка квадратная.
Кружок у х=6 не закрашен, точка не принадлежит числовому промежутку, скобка круглая.
Область определения функции:
D(f) = х∈[-5; 6).
б) область значений функции;
Область значений функции - это проекция графика на ось Оу. Обозначение Е(f) или Е(у).
Согласно графика, самое меньшее (самое "низкое") значение у= -1, самое большее (самое "высокое") у=5.
Область значений функции:
Е(f) = [-1; 5].
в) значения аргумента, при которых функция равна нулю;
График пересекает ось Ох в двух точках, в этих точках у=0.
у=0 при х=0 и х=1.
г) промежутки возрастания;
Функция возрастает в промежутке при х от -4 до -2 и при х от 0,5 до 6.
Запись: f(x) возрастает при х∈(-4; -2); при х∈(0,5; 6).
д) промежутки убывания.
Функция убывает при х от -5 до -4 и при х от -2 до 0,5.
Запись: f(x) убывает при х∈(-5; -4); при х∈(-2; 0,5).
Объяснение:
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним.
2. При делении степеней с одинаковыми основаниями основание остаётся прежним, а из показателя числителя вычитают показатель знаменателя.
3.При возведении степени в степень основание остаётся прежним а показатели перемножают.
4. При возведении в степень произведения, возводят в эту степень каждый множитель и результаты перемножают.
5. Степень числа а не равного нулю с нулевым показателем равна 1
В решении.
Объяснение:
По заданному графику определите:
а) область определения функции;
Область определения - это значения х, при которых функция существует. Обозначение D(f) или D(у).
Согласно графика, данная функция существует от х= -5 до х=6.
Кружок у х= -5 закрашен, значит, точка принадлежит числовому промежутку, скобка квадратная.
Кружок у х=6 не закрашен, точка не принадлежит числовому промежутку, скобка круглая.
Область определения функции:
D(f) = х∈[-5; 6).
б) область значений функции;
Область значений функции - это проекция графика на ось Оу. Обозначение Е(f) или Е(у).
Согласно графика, самое меньшее (самое "низкое") значение у= -1, самое большее (самое "высокое") у=5.
Область значений функции:
Е(f) = [-1; 5].
в) значения аргумента, при которых функция равна нулю;
График пересекает ось Ох в двух точках, в этих точках у=0.
у=0 при х=0 и х=1.
г) промежутки возрастания;
Функция возрастает в промежутке при х от -4 до -2 и при х от 0,5 до 6.
Запись: f(x) возрастает при х∈(-4; -2); при х∈(0,5; 6).
д) промежутки убывания.
Функция убывает при х от -5 до -4 и при х от -2 до 0,5.
Запись: f(x) убывает при х∈(-5; -4); при х∈(-2; 0,5).