В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ksyusa41
ksyusa41
13.03.2022 17:13 •  Алгебра

Прямая а перпендикулярна плоскости АВС. Найти расстояние между прямыми а и АС.​


Прямая а перпендикулярна плоскости АВС. Найти расстояние между прямыми а и АС.​

Показать ответ
Ответ:
mahomaev
mahomaev
09.04.2020 04:39
Первый рабочий за 3 дня сделал x деталей, по x/3 в день.
Второй рабочий за 4 дня сделал (x+22) деталей, по (x+22)/4 в день.
Первый работал 8 дней, второй работал 11 дней. Вдвоем они сделали
8x/3 + 11(x+22)/4 = 678 деталей.
Умножаем все на 12
32x + 33(x+22) = 678*12
65x + 121*6 = 678*2*6
65x = 6*(1356 - 121) = 6*1235
x=6*1235/65=6*19=114 деталей сделал 1 рабочий за 3 дня, по 38 в день.
x + 22 = 114 + 22 = 136 деталей сделал 2 рабочий за 4 дня, по 34 в день.
ответ: 1 - 38 в день, 304 за 8 дней, 2 - 34 в день, 374 за 11 дней.
0,0(0 оценок)
Ответ:
Bab4enock
Bab4enock
13.06.2021 18:09

Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.

Знаходження похідної:

f'(x) = d/dx (2x - x²)= 2 - 2x

Знаходимо точки екстремуму:

f'(x) = 02 - 2x = 02x = 2x = 1

Таким чином, точка екстремуму x = 1.

Досліджуємо знак похідної та визначаємо проміжки монотонності:

3.1. Розглянемо інтервал (-∞, 1):

Для x < 1:

f'(x) = 2 - 2x < 0 (знак "менше нуля")

Таким чином, на цьому інтервалі функція f(x) спадає.

3.2. Розглянемо інтервал (1, +∞):

Для x > 1:

f'(x) = 2 - 2x > 0 (знак "більше нуля")

Таким чином, на цьому інтервалі функція f(x) зростає.

Знаходимо значення функції f(x) у точці екстремуму:

f(1) = 2(1) - (1)²= 2 - 1= 1

Таким чином, екстремум функції f(x) в точці (1, 1).

Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:

Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота