2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758
2) приравниваем её к 0 и решаем уравнение;
3) смотрим, какие корни попали в указанный промежуток и ищем значения функции в этих точках и на концах промежутка;
4) пишем ответ.
Поехали?
1) у' = 3x^2 +2x -8
2) 3x^2 +2x -8 = 0
x1= -2 ( входит в промежуток) x2 = 4/3 (не входит в промежуток)
3)у(-3) = (-3)^3 + (-3)^2 -8*(-3) -8 = -27 +9 +24 -8 = -2
y(0) = 0^3 +0^2 -8*0 -8 = -8
y(-2) = (-2)^3 +(-2)^2 -8*(-2) -8 = -8 +4 +16 -8 = 4
4) ответ: max y = y(-2) = 4
2.17. из трехзначных а 5 делятся 100, 105,110; 115..,995
Пусть всего n чисел делится на 5, тогда увидев, что их можно посчитать с формулы n- го члена арифметической прогрессии, получим aₙ=a₁+d*(n-1), где а₁=100; aₙ=995, d=5, найдем n. подставим данные в формулу. получим
995=100+5*(n-1); 199=20=n-1⇒n=199+1-20=180
значит, трёхзначных чисел, делящихся на 5, 180.
Аналогично найдем количество трёхзначных чисел, делящихся на 7.
105, 112, 119...,994; а₁=105; aₙ=994, d=7.
994=105+7*(n-1); n-1=142-15; n=128
значит, трёхзначных чисел, делящихся на 7, 128.
на два делятся четные. Всего 999-99=900 трехзначных, половина из них четные. т.е. четных 450
Тогда общее количество искомых чисел, 450+180+128=758