Скорость теплохода в стоячей воде равна 32,5 км/ч.
Объяснение:
Дано:
S₁ = 4 км против течения
S₂ = 33 км по течению
v = 6,5 км/ч -- скорость течения
T = 1 ч -- общее время
Найти: V -- скорость теплохода в стоячей воде
(V – v) -- скорость теплохода при движении против течения, поэтому на путь против течения теплоход затратил S₁ / (V – v) времени.
(V + v) -- скорость теплохода при движении по течению, поэтому на путь по течению теплоход затратил S₂ / (V + v) времени.
Общее время T равно сумме времени, которое теплоход шел по течению и против течения:
T = S₁ / (V – v) + S₂ / (V + v)
T(V – v)(V + v) = S₁(V + v) + S₂(V – v)
TV² – Tv² = (S₁ + S₂)V + (S₁ – S₂)v
TV² – (S₁ + S₂)V – Tv² – (S₁ – S₂)v = 0
Подставим числовые значения:
V² – (4 + 33)V – 6,5² – (4 – 33)·6,5 = 0
V² – 37V + 146,25 = 0
D = 37² – 4·146,25 = 784 = 28²
V₁ = (37 – 28)/2 = 9/2 = 4,5 км/ч -- не подходит, т.к. при такой скорости теплоход не смог бы двигаться против течения реки
V₂ = (37 + 28)/2 = 32,5 км/ч
log a (a^2/b) log a (a^2) - log a (b)
5log (b^2)/a (a^2/b)= 5· = 5· =
log a (b^2)/a log a (b^2)-log a (a)
2- 3 (-1)
= 5 = 5 = -1
2·3 -1 5
2) log 2 (a^1/3) , если log 4 (a^3)=9
log 4 (a^3)=9 ⇔3 log 4 (a)=9 ⇔ log 4 (a)=3
log 4 (a^1/3) (1/3)log 4 (a) 1log 2 (a^1/3) = = = = 2
log 4 (2) log 4 (√4) 1/2
3) lg2.5 если log 4(125) = a
log 4(125) = a ⇔ log 4(5³) =3 log 4(5) =a ⇔ log 4(5)=a/3
log 4 (5/2) log 4 (5)-log 4 (2) a/3-1/2 2a-3lg2.5 = = = =
log 4 (5·2) log 4 (5) +log 4 (2) a/3 +1/2 2a+3
Скорость теплохода в стоячей воде равна 32,5 км/ч.
Объяснение:
Дано:
S₁ = 4 км против течения
S₂ = 33 км по течению
v = 6,5 км/ч -- скорость течения
T = 1 ч -- общее время
Найти: V -- скорость теплохода в стоячей воде
(V – v) -- скорость теплохода при движении против течения, поэтому на путь против течения теплоход затратил S₁ / (V – v) времени.
(V + v) -- скорость теплохода при движении по течению, поэтому на путь по течению теплоход затратил S₂ / (V + v) времени.
Общее время T равно сумме времени, которое теплоход шел по течению и против течения:
T = S₁ / (V – v) + S₂ / (V + v)
T(V – v)(V + v) = S₁(V + v) + S₂(V – v)
TV² – Tv² = (S₁ + S₂)V + (S₁ – S₂)v
TV² – (S₁ + S₂)V – Tv² – (S₁ – S₂)v = 0
Подставим числовые значения:
V² – (4 + 33)V – 6,5² – (4 – 33)·6,5 = 0
V² – 37V + 146,25 = 0
D = 37² – 4·146,25 = 784 = 28²
V₁ = (37 – 28)/2 = 9/2 = 4,5 км/ч -- не подходит, т.к. при такой скорости теплоход не смог бы двигаться против течения реки
V₂ = (37 + 28)/2 = 32,5 км/ч