Для начала представим все многочлены в виде произведений простых чисел.
А так и останется.
Заметим, что у всех трёх произведений одинаковые основания у множетелей: 3 и 7. Это даёт нам возможность сравнивать показатели степеней множителей.
Сравним и . Показатели степени 7 у обоих произведений одинаковы, а вот степень тройки справа на один больше, чем слева. Поэтому правое выражение больше левого.
Сравним и . Показатели степени 3 у обоих произведений одинаковы, а вот степень семёрки справа на один больше, чем слева. Поэтому правое выражение больше левого.
Объяснение:
Для начала представим все многочлены в виде произведений простых чисел.
А так и останется.
Заметим, что у всех трёх произведений одинаковые основания у множетелей: 3 и 7. Это даёт нам возможность сравнивать показатели степеней множителей.
Сравним и . Показатели степени 7 у обоих произведений одинаковы, а вот степень тройки справа на один больше, чем слева. Поэтому правое выражение больше левого.
Сравним и . Показатели степени 3 у обоих произведений одинаковы, а вот степень семёрки справа на один больше, чем слева. Поэтому правое выражение больше левого.
Получаем следующий порядок:
4х²-2х+3=0
D=(-2)²-4×4×3=4-48=-44 D<0, уравнение не имеет корней
----------------------------------------------------------------------------
5х²+26х=24
5х²+26х-24=0
D=26²-4×5×(-24)=676+480=1156 D>0
х₁=
х₂=
х₁=0,8
х₂=-6
-------------------------------------------------------------------------
3х²-5х=0
D=5²-4×3×0=25-0=25 D>0
х₁=
х₂=
х₁=1,667
х₂=0
--------------------------------------------------------------------
6-2х²=0
-2х²+6=0
D=0²-4×(-2)×6=0+48=48 D>0
х₁=
х₂=
х₁=-1,732
х₂=1,732
------------------------------------------------------------------
t²=35-2t
t²+2t-35=0
D=2²-4×1×(-35)=4+140=144
t₁=
t₂=
t₁=5
t₂=-7