При діленні двоцифрового числа на добуток його чисел неповну частку 5 і остачу 2. Різниця цього числа і числа, отриманого перестановкою його чисел дорівнює 36. Складіть систему. Знайдіть ці числа.
Требуется получить трехзначное число, записанное тремя одинаковыми цифрами, обозначим цифру, которая повторяется - k, т.о. число будет записываться так kkk Разложив это число на разрядные слагаемые получим сумму: 100 k + 10k + k = 111*k, где k = 1, 2,,9
Последовательный ряд натуральных чисел, начиная с 1 является возрастающей арифметической прогрессией с первым членом а1 = 1 и разностью d = 1 . А найденная сумма 111*k есть Sn - сумма n-первых членов арифметической прогрессии, которые надо сложить, чтобы получить наше трехзначное число. Тогда по формуле суммы n-первых членов арифметической прогрессии Sn = ( 2а1 + (n-1)*d / 2 ) * n
Подставим сюда числовые значения Sn, а1 и d и найдем n :
111*k = ( 2*1 + (n-1)*1 / 2 ) * n 111*k = ( 2 +n-1 / 2 ) * n 111*k = ( 1 +n / 2 ) * n 111*k = n + n^2 / 2 222*k = n + n^2 n^2 + n - 222*k = 0 D = 1 + 4*222*k = 1 + 888*k Т.к. n - натуральное число, то SQRT( D ) должно быть целым, значит число 1 + 888*k должно быть полным квадратом, т.е заканчиваться цифрой 1, 4, 5, 6 или 9. Соответственно 888*k может заканчиваться на 0, 3, 4, 5, 8.
На 3 или 5 888*k не может заканчиваться. Если 888*k заканчивается на 0, то k=5 Если 888*k заканчивается на 4, то k=3 или k=8. Если 888*k заканчивается на 8, то k=1 или k=6.
Т.о. k может быть 1, 3, 5, 6, 8.
Проверим при каком из этих значений 1 + 888*k является квадратом: при k=1 1 + 888*1 = 889 (нет) при k=3 1 + 888*3 = 2665 (нет) при k=5 1 + 888*5 = 4441 (нет) при k=8 1 + 888*8 = 7105 (нет) при k=6 1 + 888*6 = 5329 (да, тогда SQRT( D ) = SQRT( 5329 ) = 73 )
n =( -1 + 73)/2 = 72/2 = 36
ОТВЕТ: нужно сложить 36 последовательных натуральных чисел, начиная с 1, получится число 666.
0,15(у-4)=9,9-0,3(у-1) Обозначения: 0,15у-0,6=9,9-0,3у+0,3 -после этой черточки идет проверка. (Игрики в одну сторону, а обыкновенные числа в другую, то получается) 0,15у+0,3у=9,9+0,3+0,6 0,45у=10,8 у=10,8:0,45 у=1080:45 у=24
0,15(24-4)=0.15*20=3 9,9-0,3(24-1)=9,9-0,3*23=9,9-6,9=3 3=3 ответ:у=24 Я думаю, что так.Уравнение я решила правильно(проверка подтверждает).Я не знаю как ты решаешь в школе уравнения, но я в школе их решаю так.Если, что изменишь по своему.В правом верхнем углу написаны обозначения.Надеюсь, что з
100 k + 10k + k = 111*k, где k = 1, 2,,9
Последовательный ряд натуральных чисел, начиная с 1 является возрастающей арифметической прогрессией с первым членом а1 = 1 и разностью d = 1 .
А найденная сумма 111*k есть Sn - сумма n-первых членов арифметической прогрессии, которые надо сложить, чтобы получить наше трехзначное число. Тогда по формуле суммы n-первых членов арифметической прогрессии
Sn = ( 2а1 + (n-1)*d / 2 ) * n
Подставим сюда числовые значения Sn, а1 и d и найдем n :
111*k = ( 2*1 + (n-1)*1 / 2 ) * n
111*k = ( 2 +n-1 / 2 ) * n
111*k = ( 1 +n / 2 ) * n
111*k = n + n^2 / 2
222*k = n + n^2
n^2 + n - 222*k = 0
D = 1 + 4*222*k = 1 + 888*k
Т.к. n - натуральное число, то SQRT( D ) должно быть целым, значит
число 1 + 888*k должно быть полным квадратом, т.е заканчиваться цифрой 1, 4, 5, 6 или 9. Соответственно 888*k может заканчиваться на 0, 3, 4, 5, 8.
На 3 или 5 888*k не может заканчиваться.
Если 888*k заканчивается на 0, то k=5
Если 888*k заканчивается на 4, то k=3 или k=8.
Если 888*k заканчивается на 8, то k=1 или k=6.
Т.о. k может быть 1, 3, 5, 6, 8.
Проверим при каком из этих значений 1 + 888*k является квадратом:
при k=1 1 + 888*1 = 889 (нет)
при k=3 1 + 888*3 = 2665 (нет)
при k=5 1 + 888*5 = 4441 (нет)
при k=8 1 + 888*8 = 7105 (нет)
при k=6 1 + 888*6 = 5329 (да, тогда SQRT( D ) = SQRT( 5329 ) = 73 )
n =( -1 + 73)/2 = 72/2 = 36
ОТВЕТ: нужно сложить 36 последовательных натуральных чисел, начиная с 1, получится число 666.
0,15у-0,6=9,9-0,3у+0,3 -после этой черточки идет проверка.
(Игрики в одну сторону, а обыкновенные числа в другую, то получается)
0,15у+0,3у=9,9+0,3+0,6
0,45у=10,8
у=10,8:0,45
у=1080:45
у=24
0,15(24-4)=0.15*20=3
9,9-0,3(24-1)=9,9-0,3*23=9,9-6,9=3
3=3
ответ:у=24
Я думаю, что так.Уравнение я решила правильно(проверка подтверждает).Я не знаю как ты решаешь в школе уравнения, но я в школе их решаю так.Если, что изменишь по своему.В правом верхнем углу написаны обозначения.Надеюсь, что з