Пусть всё задание будет единица. Время, за которое первая бригада рабочих выполнит всё задание, пусть будет х час. Тогда второй бригаде понадобится х+8 ч Найдем производительность каждой бригады, т.е. сколько работы выполняется за 1 час. За 1 час первая бригада выполняет 1/х задания. Вторая - 1/(х+8) Так как, работая вместе, обе бригады выполняют задание за 3 часа, их совместная производительность -1/3 Составим уравнение: 1/х + 1/(х+8)=1/3 Избавимся от дробей, умножив обе части уравнения на 3х(х+8) 3(х+8)+3х=х²+8х 3х+24+3х=х²+8х х²+2х -24=0 D=b²-4ac=2²-4·1·(-24)=100 х₁= (-(2)+√100 ):2=4 х₂=(-(2)-√100 ):2=-6 ( не подходит) Первой бригаде для выполнения задания необходимо 4 часа.
В решении.
Объяснение:
Первое задание.
Координаты точек пересечения графиком осей координат:
(-2; 0) и (0; -4)
Уравнение функции у = kx + b
Подставить в это уравнение первые известные значения х= -2 и у=0.
Получим первое уравнение системы:
k * (-2) + b = 0;
Подставить в это же уравнение вторые значения х= 0 и у= -4.
Получим второе уравнение системы:
k * 0 + b = -4
Решить систему:
k * (-2) + b = 0;
k * 0 + b = -4
Из второго уравнения b = -4, подставить в первое и вычислить k:
-2k - 4 = 0
-2k = 4
k = 4/-2
k = -2.
Подставить вычисленные значения k и b в уравнение у=kx + b и получить нужное уравнение:
у = -2х - 4.
Второе задание.
Координаты точек пересечения графиком осей координат:
(-4; 0) и (0; 2)
Уравнение функции у = kx + b
Подставить в это уравнение первые известные значения х= -4 и у=0.
Получим первое уравнение системы:
k * (-4) + b = 0;
Подставить в это же уравнение вторые значения х= 0 и у= 2.
Получим второе уравнение системы:
k * 0 + b = 2
Решить систему:
k * (-4) + b = 0;
k * 0 + b = 2
Из второго уравнения b = 2, подставить в первое и вычислить k:
-4k + 2 = 0
-4k = -2
k = -2/-4
k = 0,5.
Подставить вычисленные значения k и b в уравнение у=kx + b и получить нужное уравнение:
у = 0,5х + 2.
Время, за которое первая бригада рабочих выполнит всё задание, пусть будет х час.
Тогда второй бригаде понадобится х+8 ч
Найдем производительность каждой бригады, т.е. сколько работы выполняется за 1 час.
За 1 час первая бригада выполняет 1/х задания.
Вторая - 1/(х+8)
Так как, работая вместе, обе бригады выполняют задание за 3 часа,
их совместная производительность -1/3
Составим уравнение:
1/х + 1/(х+8)=1/3
Избавимся от дробей, умножив обе части уравнения на 3х(х+8)
3(х+8)+3х=х²+8х
3х+24+3х=х²+8х
х²+2х -24=0
D=b²-4ac=2²-4·1·(-24)=100
х₁= (-(2)+√100 ):2=4
х₂=(-(2)-√100 ):2=-6 ( не подходит)
Первой бригаде для выполнения задания необходимо 4 часа.