Тут и доказывать нечего. 1) b^2 + 4 - сумма квадрата и положительного числа, она всегда положительна. -3/(b^2 + 4) - отрицательное число, деленное на положительное, отрицательно. 2) a^2 + 8 - сумма квадрата и положительного числа, она всегда положительна. (x - 3)^2 - квадрат, положителен при любых х, кроме 3. При х = 3 он = 0. Неотрицательное число, деленное на положительное, неотрицательно. 3) y^2 + 3 - всегда положительно, поэтому -y^2 - 3 всегда отрицательно. (y - 6)^2 - квадрат, положителен при любых х, кроме 6. При х = 6 он = 0. Неотрицательное число, деленное на отрицательное, неположительно. 4) a^2 + 7 - сумма квадрата и положительного числа, она всегда положительна. 5/(a^2 + 7) - положительное число, деленное на положительное, положительно.
П+3С=9 умножим на 3
3П+5С=19
3П+9С=27
3П+5С=19 вычтем из 1 второе
9С-5С=27-19
4С=8
С=2(м)-пошло на 1 сарафан
П+3С=9
П+3*2=9
П+6=9
П=3(м)-пошло на одно платье
2. Упростите
выражение: а) (у + 3)2 – 6у, б) (с – 2)2 – с(3с – 4)
а)у²+6у+9-6у=у²+9
б)с²-4с+4-3с²+4с=-2с²+4
Построить график функции у = - 2х + 3.
х=0 х=3
у=3 у=-3
по этим двум точкам строим прямую
б)
При каком значении х значение у равно
– 3.
-3=-2х+3
-2х=-6
х=3
6*. Запишите уравнение прямой, которая
проходит через начало координат и через точку пересечения прямых
2х + 3у = - 4
х – у = - 7 умножим на 3
2х+3у=-4
3х-3у=-21 сложим
5х=-25
х=-5
х-у=-7
-5-у=-7
у=2
Прямая проходит через точку (0;0)-начало координат и через точку(-5;2).
у=kx+b
0=k*0+b
b=0
2=-5k+0
-5k=2
k=-2/5=-0.4
y=0.4x
уравнение прямой,которая проходит через эти две точки
1) b^2 + 4 - сумма квадрата и положительного числа, она всегда положительна.
-3/(b^2 + 4) - отрицательное число, деленное на положительное, отрицательно.
2) a^2 + 8 - сумма квадрата и положительного числа, она всегда положительна.
(x - 3)^2 - квадрат, положителен при любых х, кроме 3. При х = 3 он = 0.
Неотрицательное число, деленное на положительное, неотрицательно.
3) y^2 + 3 - всегда положительно, поэтому -y^2 - 3 всегда отрицательно.
(y - 6)^2 - квадрат, положителен при любых х, кроме 6. При х = 6 он = 0.
Неотрицательное число, деленное на отрицательное, неположительно.
4) a^2 + 7 - сумма квадрата и положительного числа, она всегда положительна.
5/(a^2 + 7) - положительное число, деленное на положительное, положительно.