Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
1.Область определения функции вся числовая прямая ( Множество действительных чисел 2.Область значения функции вся числовая прямая. Функция непрерывна на всей области определения функции. 3. Найдём промежутки монотонности и точки экстремума Для этого найдём производную Она равна 3х²-32х+69 Найдём стационарные точки 1/3(3х²-32х+69)=0 (3х²-32х+69)=0 Д=1024-828=196 х1=(32-14)/6=3 х2=(32+14)/6=46/6=7 2/3 3х²-32х+69=(х-3)(х-7 2/3)
+3-7 2/3+
Функция возрастает на промежутках (-∞; 3) и (7 2/3; +∞) Функция убывает на промежутке (3;7 2/3)
В точке х=3 производная меняет знак с "+" на "-" , значит при х=3 функция достигает максимального значения у=1/3*(3³-16*3²+69*3-54)=9-48+69-18=12 А (3;12) точка максимума В точке х=7 2/3=23/3 функция меняет знак с "-" на "+" значит в этой точке функция принимает минимальное значение
у=1/3((23/3)³-16*(23/3)²+69*23/3-54)=12167/81-8464/27+1587/9-54/3= 12167/81-25392/81+14283/81-1458/81=-337/81=-4 13/81 В(7 2/3 ; -4 13/81) точка минимума
Осталось построить график функции. Можно конечно найти ещё точки перегиба, но для школы это наверное не надо.
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
2.Область значения функции вся числовая прямая. Функция непрерывна на всей области определения функции.
3. Найдём промежутки монотонности и точки экстремума
Для этого найдём производную Она равна 3х²-32х+69
Найдём стационарные точки 1/3(3х²-32х+69)=0
(3х²-32х+69)=0
Д=1024-828=196
х1=(32-14)/6=3
х2=(32+14)/6=46/6=7 2/3
3х²-32х+69=(х-3)(х-7 2/3)
+3-7 2/3+
Функция возрастает на промежутках (-∞; 3) и (7 2/3; +∞)
Функция убывает на промежутке (3;7 2/3)
В точке х=3 производная меняет знак с "+" на "-" , значит при х=3 функция достигает максимального значения
у=1/3*(3³-16*3²+69*3-54)=9-48+69-18=12
А (3;12) точка максимума
В точке х=7 2/3=23/3 функция меняет знак с "-" на "+" значит в этой точке функция принимает минимальное значение
у=1/3((23/3)³-16*(23/3)²+69*23/3-54)=12167/81-8464/27+1587/9-54/3=
12167/81-25392/81+14283/81-1458/81=-337/81=-4 13/81
В(7 2/3 ; -4 13/81) точка минимума
Осталось построить график функции. Можно конечно найти ещё точки перегиба, но для школы это наверное не надо.