1) R=(5 корень из 3 * корень из 3) и все разделить на 3 =15/3=5 см S=пи * r в квадрате=25 см в квадрате. Длина окружности равна 2 пи*r=10пи см. 2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см) По такому же принципу, равна (120/360) площади окружности S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате) 3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3 2) R=(2* корень из 3)/ корень из 3=2 3) 4/корень из 3-сторона шестиугольника 4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3
Пусть случайная величина Х - величина выигрыша.Очевидно, что при покупке 1 билета она принимает 3 значения: 0 рублей,100 рублей и 200 рублей. Вероятность выиграть 200 рублей Р(200) =1/1000, вероятность выиграть 100 рублей равна Р(100)=1/100. Вероятность выиграть 0 рублей Р(0)=989/1000. Проверка: 1/1000+1/100+989/1000=1, так что все вероятности найдены верно. Теперь можно составить закон распределения данной дискретной случайной величины:
S=пи * r в квадрате=25 см в квадрате.
Длина окружности равна 2 пи*r=10пи см.
2) Длина круга l=2*пи*r, а его градусная мера 360, т.к. тут гралусная мера 120, то длина дуги I=(120/360)*пи *r=3,14*4/3=4,19(см)
По такому же принципу, равна (120/360) площади окружности
S=1/3*пи*r в квадрате=1/3*3,14*4в квадрате=16,75(см в квадрате)
3) 1) сторона треугольника =6 корней из 3/3=2 корня из 3
2) R=(2* корень из 3)/ корень из 3=2
3) 4/корень из 3-сторона шестиугольника
4) Периметр шестиугольника=24 корень из 3/3=8 корень из 3
Xi 0 100 200
Pi 0,989 0,01 0,001