Войти
Регистрация
Спроси ai-bota
В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Показать больше
Показать меньше
Csgopro1
21.08.2020 22:53 •
Алгебра
Постройте график функции. с таблицей значений
у=-х³
у=-х²
у=-2х
Показать ответ
Ответ:
Маргарита5515
02.08.2020 23:25
Используем формулу суммы синусов
sinα + sinβ = 2 * sin
* cos
α = x + 30
β = x - 30
sin (x + 30) + sin (x - 30) = 2 * sin
* cos
= 2 √ (3cosx)
2 * sin
* cos
= 2 √(3cosx)
2 * sin x * cos 30 = 2 √(3cosx)
2 * √3/2 * cosx = 2 √(3cosx)
√3 * sinx = 2 √(3cosx)
(√3 * sinx)² = (2 √(3cosx))²
3 * sin ² x = 4 * 3 * cosx
sin²x = 1 - cos²x
3 * (1 - cos²x) = 4 * 3 * cosx
1 - cos²x = 4 *cosx
cos²x + 4cosx - 1 = 0
cosx = t
t² + 4 t - 1 = 0
D = 16 - 4 * 1 * (- 1) = 16 + 4 = 20
t ₁ = (- 4 - √20)/2 = (- 4 - 2√5)/2 = - 2 - √5
t₂ = (- 4 + √20)/2 = (- 4 + 2√5)/2 = - 2 + √5
cosx = - 2 - √5 < - 1 не удовлетворяет, т.к. значения -1 ≤ cosх ≤ 1
cos x = - 2 + √5 < 1 удовлетворяет
Используем формулу
1 + tg²x =
tg²x =
- 1
tg²x =
- 1 =
-1 =
=
=
=
= 8 + 4√5
tg²x = 8 + 4√5 = 4 (2 + √5)
tgx = 2√(2 + √5)
tgx = - 2√(2 + √5)
0,0
(0 оценок)
Ответ:
lolkek6969
04.07.2022 09:27
Во-первых, a =/= 0, потому что если a = 0, то
-2x - 2 = 0; x = -1 - всего 1 корень.
Решаем квадратное уравнение
2ax^2 - 2x - 3a - 2 = 0
D/4 = 1^2 - 2a(-3a - 2) = 1 + 6a^2 + 4a = 6a^2 + 4a + 1 > 0
Решаем это неравенство
D/4 = 2^2 - 6*1 = 4 - 6 < 0 - неравенство верно при любом а
{ x1 = (1 - √( 6a^2 + 4a + 1 )) / (2a) < 1
{ x2 = (1 + √( 6a^2 + 4a + 1 )) / (2a) > 1
Решаем эту систему
{ (1 - √( 6a^2 + 4a + 1 ) - 2a) / (2a) < 0
{ (1 + √( 6a^2 + 4a + 1 ) - 2a) / (2a) > 0
1) Если a < 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) > 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) < 0
Решений нет, потому что 1 - 2a + √(6a^2 + 4a + 1) > 1 - 2a - √(6a^2 + 4a + 1)
при любом а.
2) Если a > 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) < 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) > 0
Отделяем корень
{ √( 6a^2 + 4a + 1 ) > 1 - 2a
{ √( 6a^2 + 4a + 1 ) > 2a - 1
При возведении в квадрат получается 2 одинаковых неравенства
6a^2 + 4a + 1 > 4a^2 - 4a + 1
2a^2 + 8a > 0
2a(a + 4) > 0
a < -4 U a > 0
Но у нас условие: a > 0, поэтому
ответ: при любом a > 0
0,0
(0 оценок)
Популярные вопросы: Алгебра
liz041
14.12.2022 00:59
Вычислить sin 765 градусов вычислить соs 19п/6...
m3rry1
13.10.2022 05:33
(p+a)в квадрате преобразовать по формуле...
Arigato99
13.10.2022 05:33
Найдите сумму первых восьми членов прогрессии, второй член которой равен 6, а четвертый равен 24 ((...
12345578824828
26.02.2020 19:02
Какое из данных ниже выражений при любых значениях n равно произведению 49*7^n ?...
fgegegegeegrrfff
26.02.2020 19:02
Найдите значение выражения ( x-4y)^2+4y(2x-y)...
eduardpiterskiy
16.02.2020 15:36
На столике в вагоне движущегося поезда лежит книга. относительно каких тел книга находится в покое? а)относительно рельсов б)относительно столика желательно кратко,...
Владимир328
16.02.2020 15:36
Какое из неравенств верно? 1) (-10)^12*(-5)^10 0 )^15*(-8)^11 0 )^19*(-3)^20 0 )^14*(-2)^23 0...
igubaevak
30.12.2022 05:25
Втреугольнике (крм) угл (крм) равен 56 гр, биссектрисы внешних углов при вершинах (к) и ( м) пересекаются в точке (о). найдите угл (ком)!...
GelyaKazarik
30.12.2022 05:25
Какая прямая имеет с графиком функций y=x^2 общую точку с отрицательной абсциссой? 1)y=5x 2)y=0 3)y= - 4 4)y= -x...
dron1131
10.08.2020 10:33
Что нужно на что умножить чтобы получилось 78...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
sinα + sinβ = 2 * sin * cos
α = x + 30
β = x - 30
sin (x + 30) + sin (x - 30) = 2 * sin * cos = 2 √ (3cosx)
2 * sin * cos = 2 √(3cosx)
2 * sin x * cos 30 = 2 √(3cosx)
2 * √3/2 * cosx = 2 √(3cosx)
√3 * sinx = 2 √(3cosx)
(√3 * sinx)² = (2 √(3cosx))²
3 * sin ² x = 4 * 3 * cosx
sin²x = 1 - cos²x
3 * (1 - cos²x) = 4 * 3 * cosx
1 - cos²x = 4 *cosx
cos²x + 4cosx - 1 = 0
cosx = t
t² + 4 t - 1 = 0
D = 16 - 4 * 1 * (- 1) = 16 + 4 = 20
t ₁ = (- 4 - √20)/2 = (- 4 - 2√5)/2 = - 2 - √5
t₂ = (- 4 + √20)/2 = (- 4 + 2√5)/2 = - 2 + √5
cosx = - 2 - √5 < - 1 не удовлетворяет, т.к. значения -1 ≤ cosх ≤ 1
cos x = - 2 + √5 < 1 удовлетворяет
Используем формулу
1 + tg²x =
tg²x = - 1
tg²x = - 1 = -1 = = = = = 8 + 4√5
tg²x = 8 + 4√5 = 4 (2 + √5)
tgx = 2√(2 + √5)
tgx = - 2√(2 + √5)
-2x - 2 = 0; x = -1 - всего 1 корень.
Решаем квадратное уравнение
2ax^2 - 2x - 3a - 2 = 0
D/4 = 1^2 - 2a(-3a - 2) = 1 + 6a^2 + 4a = 6a^2 + 4a + 1 > 0
Решаем это неравенство
D/4 = 2^2 - 6*1 = 4 - 6 < 0 - неравенство верно при любом а
{ x1 = (1 - √( 6a^2 + 4a + 1 )) / (2a) < 1
{ x2 = (1 + √( 6a^2 + 4a + 1 )) / (2a) > 1
Решаем эту систему
{ (1 - √( 6a^2 + 4a + 1 ) - 2a) / (2a) < 0
{ (1 + √( 6a^2 + 4a + 1 ) - 2a) / (2a) > 0
1) Если a < 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) > 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) < 0
Решений нет, потому что 1 - 2a + √(6a^2 + 4a + 1) > 1 - 2a - √(6a^2 + 4a + 1)
при любом а.
2) Если a > 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) < 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) > 0
Отделяем корень
{ √( 6a^2 + 4a + 1 ) > 1 - 2a
{ √( 6a^2 + 4a + 1 ) > 2a - 1
При возведении в квадрат получается 2 одинаковых неравенства
6a^2 + 4a + 1 > 4a^2 - 4a + 1
2a^2 + 8a > 0
2a(a + 4) > 0
a < -4 U a > 0
Но у нас условие: a > 0, поэтому
ответ: при любом a > 0