1. Найдите сумму бесконечно убывающей геометрической прогрессии 36: 12; 4; ...;
b1=36
b2=12
b3=4
q=b2/b1
s=b1/(1-q)
q=-12/36=-1/3
s=36/(1+1/3)=36/(4/3)=36*3/4=27
ответ: 27
2. Сумма бесконечно убывающей геометрической прогрессии равна 54. Найти, если
Если...? Тут как будто какого-то условия не хватает ((
3. Найдите сумму и первых членов арифметической прогрессии, если а=1, an=200, n=100
Sn = (a1 + an)/2* n
a1 = 1
an = 200
n = 100
S100 = (1 + 200)/2*100 = 201*50 = 10050
ответ: 10050
Объяснение:
Проверь второе задание, там будто реально условия не хватает.
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
вродебы так
1. Найдите сумму бесконечно убывающей геометрической прогрессии 36: 12; 4; ...;
b1=36
b2=12
b3=4
q=b2/b1
s=b1/(1-q)
q=-12/36=-1/3
s=36/(1+1/3)=36/(4/3)=36*3/4=27
ответ: 27
2. Сумма бесконечно убывающей геометрической прогрессии равна 54. Найти, если
Если...? Тут как будто какого-то условия не хватает ((
3. Найдите сумму и первых членов арифметической прогрессии, если а=1, an=200, n=100
Sn = (a1 + an)/2* n
a1 = 1
an = 200
n = 100
S100 = (1 + 200)/2*100 = 201*50 = 10050
ответ: 10050
Объяснение:
Проверь второе задание, там будто реально условия не хватает.
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так