У2 - 10y - 24 = 0Это квадратное уравнение которое решается через формулу нахождения дискриминанта. у2 это а. а = 1 - 10у это в. в = -10 -24 это с. с = -24 Написали а,в,с. Теперь вспоминаем формулу нахождения дискриминанта и подставляем туда а, в, с. Д = в2 (2 это значит в квадрате) - 4 * а * с. * это умножить Д = (-10)2 - 4 * 1 * (-24) = 100 + 96 = 196 Дальше нам нужно будет находить корень из Д. Т.е. корень из 196, а это 14. Дальше находим х1 и х2, посредством формул. х1,2 = -в+- корень из Д / 2 * а подставляем х1 = - (-10) - 14 / 2 * 1 = 10 - 14 / 2 = - 4 / 2 = - 2 х2 = - (-10) + 14 / 2 * 1 = 10 + 14 / 2 = 24 / 2 = 12
2.)p^2/9-3p + p/p-3=p^2/3(3-p)+p/p-3=p^2/3(3-p) + -3p/3(3-p)=p^2-3p/3(3-p)= -p/3. доп.множ.: 1 и -3. Получается, что при решении левой части выходит тот же ответ, что и справа. Что и требовалось доказать.
№4. 9/x - 1-x/x+4=1; x не равняется (перечёркнутый знак "=" ) и не равняется -4(перечёркнутый знак "=" ), следовательно:
9(x+4)-x(1-x)/x(x+4)=1;
9x+36-x+x^2=x^2+4x;
9x-x+x^2-x^2-4x= - 36;
4х= - 36;
х= - 36/4;
х=-9.
ответ: х= - 9.
Извини. что так долго, но мне сначала нужно было самой решить, а потом всё на компьютер перенести. Надеюсь, что тебе это и ты успеваешь это написать.Если не сложно, поставь лучший ответ
у2 это а. а = 1
- 10у это в. в = -10
-24 это с. с = -24
Написали а,в,с. Теперь вспоминаем формулу нахождения дискриминанта и подставляем туда а, в, с.
Д = в2 (2 это значит в квадрате) - 4 * а * с. * это умножить
Д = (-10)2 - 4 * 1 * (-24) = 100 + 96 = 196
Дальше нам нужно будет находить корень из Д. Т.е. корень из 196, а это 14.
Дальше находим х1 и х2, посредством формул.
х1,2 = -в+- корень из Д / 2 * а
подставляем х1 = - (-10) - 14 / 2 * 1 = 10 - 14 / 2 = - 4 / 2 = - 2
х2 = - (-10) + 14 / 2 * 1 = 10 + 14 / 2 = 24 / 2 = 12
Объяснение:
№1. А) 18p^3/k^5* k^6/24p^9=3k/4p^6;
Б) 5a^8/3+a:15a^4/a^2+6a+9=5a^8/3+a*(a+3)^2=a^4(a+3)/3=a^5+3a^4/3;
В)4y^2-1/y^2-9 : 6y+3/y+3=(2y-1)(2y+1)/(y+3)(y-3)*y+3/2(2y+1)=2y-1/3(y-3)=2y-1/3y-9.
№2. (x/x-3-2/x+3 : 4x^2+4x+24/x^2-9=1/4=0,25
1.)x/x-3 - 2/x+3=x^2+3x/(x-3)(x+3) - 2(x-3)/(x-3)(x+3)=x^2+3x-2x+6/(x-3)(x+3)=x^2+x+6/(x-3)(x+3)=x^2+x+6/x^2-9; доп.множ.:+3 и х-3
2.)x^2+x+6/x^2-9 : 4x^2+4x+24/x^2-9=x^2+x+6/x^2-9*x^2-9/4x^2+4x+24=1/4=0,25.
№3. 9-p^2/3p+9 * p^2/(3-p)^2 + p/p-3= - p/3; решаю по действиям и сравниваю ответы.
1.) 9-p^2/3p+9 * p^2/(3-p)^2=(3-p)(3+p)/3(p+3) * p^2/(3-p)^2=p^2/3(3-p)=p^2/9-3p;
2.)p^2/9-3p + p/p-3=p^2/3(3-p)+p/p-3=p^2/3(3-p) + -3p/3(3-p)=p^2-3p/3(3-p)= -p/3. доп.множ.: 1 и -3. Получается, что при решении левой части выходит тот же ответ, что и справа. Что и требовалось доказать.
№4. 9/x - 1-x/x+4=1; x не равняется (перечёркнутый знак "=" ) и не равняется -4(перечёркнутый знак "=" ), следовательно:
9(x+4)-x(1-x)/x(x+4)=1;
9x+36-x+x^2=x^2+4x;
9x-x+x^2-x^2-4x= - 36;
4х= - 36;
х= - 36/4;
х=-9.
ответ: х= - 9.
Извини. что так долго, но мне сначала нужно было самой решить, а потом всё на компьютер перенести. Надеюсь, что тебе это и ты успеваешь это написать.Если не сложно, поставь лучший ответ