Пусть x ч-время работы первой трубы, y ч-время работы второй трубы. Тогда 1/x - производительность первой трубы, 1/y - производительность второй трубы. Составим первое уравнение системы: 1/x+1/y=1/14.
1,5/x - новая производительность первой трубы. Составим второе уравнение системы:
1,5X+1/y=1/12/
Составим систему уравнений:
1/x+1/y=1/14
1,5/x+1/y=1/12
Решим алгебраического сложения. Вычтем из первого уравнения второе. Получим:
-0,5/x+0=1/14-1/12
-0,5/x=6/84-7/84
-0,5x=-1/84
x=0,5*84
x=42
Значит, время работы первой трубы - 42 часа. Тогда подставим вместо х 42 в первое уравнение системы, получим: 1/42+1/y=1/14, 1/y=1/14-1/42, 1/y=3/42-1/42, 1/y=2/42, 1/y=1/21, y=21. Значит, работая отдельно, вторая труба наполнит бассейн за 21 час.
Самое очевидное --графическое решение... кубическая парабола --функция монотонно возрастающая, синусоида --вытянута в три раза вдоль оси ОУ и сжата в 8 раз вдоль оси ОХ корни --это точки пересечения графиков... пересечение же возможно только на промежутке для у ∈ [-3; 3], следовательно для х ∈ [-∛3; ∛3] это примерно (-1.44; 1.44), т.е. немного у'же промежутка (-π/2; π/2) функция у=sin(8x) достигает максимума на этом промежутке несколько раз: у ' = 8cos(8x) = 0 ---> 8x = π/2 + πk; x = π/16 + πk/8 -π/2 < x < π/2 -π/2 < π/16 + πk/8 < π/2 -8π < π + 2πk < 8π -8 < 1 + 2k < 8 -9 < 2k < 7 -4.5 < k < 3.5 причем k∈Z, т.е. k={-4; -3; -2; -1; 0; 1; 2; 3} это количество экстремумов (максимумов и минимумов), пересечение графиков возможно в промежутках между экстремумами... таких промежутков семь)) графическая иллюстрация прилагается))
Пусть x ч-время работы первой трубы, y ч-время работы второй трубы. Тогда 1/x - производительность первой трубы, 1/y - производительность второй трубы. Составим первое уравнение системы: 1/x+1/y=1/14.
1,5/x - новая производительность первой трубы. Составим второе уравнение системы:
1,5X+1/y=1/12/
Составим систему уравнений:
1/x+1/y=1/14
1,5/x+1/y=1/12
Решим алгебраического сложения. Вычтем из первого уравнения второе. Получим:
-0,5/x+0=1/14-1/12
-0,5/x=6/84-7/84
-0,5x=-1/84
x=0,5*84
x=42
Значит, время работы первой трубы - 42 часа. Тогда подставим вместо х 42 в первое уравнение системы, получим: 1/42+1/y=1/14, 1/y=1/14-1/42, 1/y=3/42-1/42, 1/y=2/42, 1/y=1/21, y=21. Значит, работая отдельно, вторая труба наполнит бассейн за 21 час.
ответ: 21 час.
кубическая парабола --функция монотонно возрастающая, синусоида --вытянута в три раза вдоль оси ОУ
и сжата в 8 раз вдоль оси ОХ
корни --это точки пересечения графиков...
пересечение же возможно только на промежутке для у ∈ [-3; 3],
следовательно для х ∈ [-∛3; ∛3] это примерно (-1.44; 1.44), т.е.
немного у'же промежутка (-π/2; π/2)
функция у=sin(8x) достигает максимума на этом промежутке несколько раз: у ' = 8cos(8x) = 0 ---> 8x = π/2 + πk; x = π/16 + πk/8
-π/2 < x < π/2
-π/2 < π/16 + πk/8 < π/2
-8π < π + 2πk < 8π
-8 < 1 + 2k < 8
-9 < 2k < 7
-4.5 < k < 3.5 причем k∈Z, т.е. k={-4; -3; -2; -1; 0; 1; 2; 3}
это количество экстремумов (максимумов и минимумов),
пересечение графиков возможно в промежутках между экстремумами...
таких промежутков семь))
графическая иллюстрация прилагается))