По итогам тестирования студентов были получены следующие данные, представленные в таблице.
Количество , n 1 2 3 4 5 6 7 8 9 10
Число случаев, когда получено n 1 0 4 7 15 20 25 18 7 3
Найдите:
а) среднее значение
[1]
b) моду и медиану
[1]
c) дисперсию и стандартное отклонение
ответ:1) х^2 + 5х = 0;
х * (х + 5) = 0.
Приравняем каждый множитель к нулю:
х = 0;
х + 5 = 0;
х = -5.
2) х^2 - 9 = 0;
х^2 = 9;
х = √9;
х = ±3.
3) 2х^2 - 11 = 0;
2х^2 = 11;
х^2 = 11 : 2;
х^2 = 5,5;
х = √5,5.
4) х^2 + 12х + 36 = 0.
D = b^2 - 4ac = 144 - 4 * 1 * 36 = 0.
D = 0, уравнение имеет один корень.
х = -b/2a = -12/2 = -6.
5) x^2 - 6x + 9 = 0.
D = b^2 - 4ac = 36 - 4 * 1 * 9 = 0.
x = -b/2a = 6/2 = 3.
6) x^2 + 4x + 3 = 0.
D = b^2 - 4ac = 16 - 4 * 1 * 3 = 4.
D > 0, уравнение имеет два корня.
х1 = (-b + √D)/2a = (-4 + 2)/2 = -1.
x2 = (-b - √D)/2a = (-4 - 2)/2 = -3.
Объяснение:
Объяснение:
1.Так как количество опытов n = 700 довольно велико, то используем формулы Лапласа.
а) Задано: n = 700, p = 0,35, k = 270.
Найдем P700(270). Используем локальную теорему Лапласа.
Находим:
Значение функции φ(x) найдем из таблицы:
б) Задано: n = 700, p = 0,35, a = 230, b = 270.
Найдем P700(230 < k < 270).
Используем интегральную теорему Лапласа (23), (24). Находим:
Значение функции Ф(x) найдем из таблицы:
в) Задано: n = 700, p = 0,35, a = 270, b = 700.
Найдем P700(k > 270).
2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:
Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:
Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.