Раскрываем знак модуля по определению 1)если 2х²-4≥0, |2x²-4|=2x²-4 Уравнение принимает вид 2x²-4=3x-3 2x²-3x-1=0 D=9+8=17 x₁=(3-√17)/4 x₂=(3+√17)/4 Проверяем будет ли выполняться условие 2х²-4≥0⇔2(х²-2)≥0 х∈(-∞;-√2]U[√2;+∞) Так как (3-√17)/4 <0, то сравним это число с -√2 Пусть (3-√17)/4 > -√2 или 3 - √17 >- 4√2 3+4√2>√17 - верно Значит х₁ не является корнем
Так как (3+√17)/4 >0, то сравним это число с √2 Пусть (3+√17)/4 > √2 или 3 + √17 > 4√2 Возведём в квадрат 9+6√17+17>14·2 6√17>28-26 - верно Значит х₂ является корнем уравнения и принадлежит промежутку [√2;+∞)
2) если 2х²-4<0, то |2x²-4|=-2x²+4 -2х²+4=3х-3 или 2x²+3x-7=0 D=9+56=65 x₃=(-3-√65)/4 x₄=(-3+√65)/4 Проверяем выполняется ли условие 2х²-4<0 или -√2 < x < √2 Так как х₃ < 0, то сравниваем х₃ с -√2 Пусть (-3-√65)/4 > -√2 или -3 - √65 > -4√2, 4√2> 3 + √65 - верно, значит х₃∉(-√2;√2) и не является корнем уравнения Так как х₄ > 0, cравниваем х₄ с √2 Пусть (-3+√65)/4 <√2 или -3 + √65 < 4√2, √65 < 4√2+ 3 - верно, значит х₄∈(-√2;√2) и является корнем уравнения ответ. x=(3+√17)/4 x=(-3+√65)/4
Х не делится на 3, значит дает в остатке либо 1 либо 2 х=3k+1 или х =3k+2 y не делится на 3, значит дает в остатке либо 1 либо 2 y= 3n +1 или y =3n+2
тогда а= (3k+1)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 1+1+1=3 тоже делится на 3 или а= (3k+2)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 16+16+1=33 тоже делится на 3 или а= (3k+1)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1 Каждое слагаемое, которое содержит 3k или 3n кратно 3, 1+16+1=18 тоже делится на 3 или а= (3k+2)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1 Каждое слагаемое , которое содержит 3k или 3n кратно 3, 16+1+1=3 и тоже делится на 3
1)если 2х²-4≥0, |2x²-4|=2x²-4
Уравнение принимает вид
2x²-4=3x-3
2x²-3x-1=0
D=9+8=17
x₁=(3-√17)/4
x₂=(3+√17)/4
Проверяем будет ли выполняться условие
2х²-4≥0⇔2(х²-2)≥0 х∈(-∞;-√2]U[√2;+∞)
Так как (3-√17)/4 <0, то сравним это число с -√2
Пусть
(3-√17)/4 > -√2
или
3 - √17 >- 4√2
3+4√2>√17 - верно
Значит х₁ не является корнем
Так как (3+√17)/4 >0, то сравним это число с √2
Пусть
(3+√17)/4 > √2
или
3 + √17 > 4√2
Возведём в квадрат
9+6√17+17>14·2
6√17>28-26 - верно
Значит х₂ является корнем уравнения и принадлежит промежутку [√2;+∞)
2) если 2х²-4<0, то |2x²-4|=-2x²+4
-2х²+4=3х-3
или
2x²+3x-7=0
D=9+56=65
x₃=(-3-√65)/4
x₄=(-3+√65)/4
Проверяем выполняется ли условие
2х²-4<0
или
-√2 < x < √2
Так как х₃ < 0, то сравниваем х₃ с -√2
Пусть
(-3-√65)/4 > -√2
или
-3 - √65 > -4√2,
4√2> 3 + √65 - верно, значит х₃∉(-√2;√2) и не является корнем уравнения
Так как х₄ > 0, cравниваем х₄ с √2
Пусть
(-3+√65)/4 <√2
или
-3 + √65 < 4√2,
√65 < 4√2+ 3 - верно, значит х₄∈(-√2;√2) и является корнем уравнения
ответ.
x=(3+√17)/4
x=(-3+√65)/4
х=3k+1 или х =3k+2
y не делится на 3, значит дает в остатке либо 1 либо 2
y= 3n +1 или y =3n+2
тогда
а= (3k+1)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1
Каждое слагаемое, которое содержит 3k или 3n кратно 3,
1+1+1=3 тоже делится на 3
или
а= (3k+2)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1
Каждое слагаемое, которое содержит 3k или 3n кратно 3,
16+16+1=33 тоже делится на 3
или
а= (3k+1)⁴+(3n+2)⁴+1=(3k)⁴+4(3k)³+6(3k)³+4(3k)+1+(3n)⁴+4(3n)³·2+6(3n)³·2²+4(3n)·2³+16+1
Каждое слагаемое, которое содержит 3k или 3n кратно 3,
1+16+1=18 тоже делится на 3
или
а= (3k+2)⁴+(3n+1)⁴+1=(3k)⁴+4(3k)³·2+6(3k)³·2²+4(3k)·2³+16+(3n)⁴+4(3n)³+6(3n)³+4(3n)+1+1
Каждое слагаемое , которое содержит 3k или 3n кратно 3,
16+1+1=3 и тоже делится на 3