В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
mariach1
mariach1
17.08.2021 10:41 •  Алгебра

Пенсионерки на одной из планет системы альфа центавра любят раскрашивать клетки досок 2016×2016 золотыми и серебряными красками. однажды оказалось, что у всех раcкрашенных в один из дней досок в каждом квадрате 3×3 было ровно по a золотых клеток, а в каждом прямоугольнике 2×4 или 4×2 — ровно по z золотых клеток. при каких a и z это возможно?

Показать ответ
Ответ:
нася12342
нася12342
24.04.2020 03:07
Доска со сторонами 2016 на 2016 имеет 2016*2016=4 064 256 клеток. В ней поместится 3х3 квадратов 4 064 256/(3*3)=451 584=(2^10)*(3^2)*(7^2) и

может поместится 2х4 прямоугольников 4 064 256/(2*4)=508 032=

=(2^7)*(3^4)*(7^2). В каждом квадрате А золотых клеток значит всего в квадратах может быть А*(2^10)(3^2)*(7^2), при этом Z золотых клеток в прямоугольнике дают Z*(2^7)*(3^4)*(7^2). Получаем уравнение
А(2^10)(3^2)(7^2)=Z(2^7)(3^4)(7^2) после сокращения получим
8A=9Z отсюда А=9 Z=8 при других значениях A и Z c условием, что A<=9 и Z<=8 равенство не получается. Все клетки выходит закрашены)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота