ответить на во Число минимальных элементов множества {1, 2, 3, 6, 9, 18} с заданным отношением «... делится …» равно...
16) Элементы множества {0, 2, 6, 12} с заданным отношением «... кратно …» в порядке следования от минимального к максимальному...
14) Максимальные элементы множества {0, 2, 3, 12, 18} с заданным отношением «... делит …» в порядке от наименьшего к наибольшему...
24) Число ребер неографа, неявляющегося псевдографом, со степенями вершин 0, 4, 4, 0, 4 равно...
25) Степень вершины 2 в графе с вершинами 1, 2, 3, заданном матрицей смежности M
3 2 3
0 1 2
6 3 2
6)Задано универсальное множество U = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Характеристический вектор множества {1, 2, 5, 6, 8, 9} есть вектор...
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8