Объяснение:
Записать в стандартном виде
400000 = 4*10^5
23000 = 2,3*10^4
8760000 = 8,76*10^6
1230 = 1,23*10^3
43 = 4,3*10^1
0,00008 = 8*10^-5
0,0076 = 7,6*10^-3
0,098 = 9,8*10^-2
0,54 = 5,4*10^-1
0,1 = 1*10^-1
7000000 = 7*10^6
560000 = 5,6*10^5
2130000 = 2,13*10^6
19700 = 1,97*10^4
51 = 5,1*10^1
0,0007 = 7*10^-4
0,00678 = 6,78*10^-3
0,042 = 4,2*10^-2
0,34 = 3,4*10^-1
0,9 = 9*10^-1
Записать в виде натурального числа или десятичной дроби:
5 ∙ 106 = 5000000
2,7 ∙ 103 = 2700
1,56 ∙ 104 = 15600
6,78 ∙ 102 = 678
3 ∙ 10-6 = 0,000003
1,2 ∙ 10-4 = 0,00012
4,76 ∙ 10-3 = 0,00476
2,3 ∙ 10-1 = 0,23
2 ∙ 105 = 200000
7,7 ∙ 104 = 77000
5,86 ∙ 105 = 586000
2,18 ∙ 103 = 2180
4 ∙ 10-5 = 0,00004
7,2 ∙ 10-5 = 0,000072
6,12 ∙ 10-2 = 0,0612
6,5 ∙ 10-1 = 0,65
1. При каких значениях а уравнение sin ^2 x - (a+3) sin x + 3a = 0 не имеет решений ?
2. Решите уравнение cos ^2 x + cos 4x = a , если одно из его решений п/3
Участник Знаний
1. Квадратное уравнение не имеет решений, если его дискриминант отрицателен.
\sin^2x-(a+3)\sin x+3a=0\\\sin x=t,\;\sin^2x=t^2,\;-1\leq t\leq1\\t^2-(a+3)t+3a=0\\D=(-(a+3))^2-4\cdot1\cdot3a=(a+3)^2-12a=a^2-6a+9=(a-3)^2\\(a-3)^2
Последнее неравенство не имеет решений. Значит, исходное уравнение имеет решение (-ия) при любых а.
2.\;\cos^2x+\cos4x=a\\\cos4x=8\cos^4x-8\cos^2x+1\\\cos^2x+8\cos^4x-8\cos^2x+1=a\\8\cos^4x-7\cos^2x+(1-a)=0\\\cos^2x=t,\cos^4x=t^2,\;0\leq t\leq1\\8t^2-7t+(1-a)=0\\D=49-4\cdot8\cdot(1-a)=49-32+32a=17+32a\\t_{1,2}=\frac{7\pm\sqrt{17+32a}}{16}
Один из корней п/3, значит x=\frac\pi3\Rightarrow\cos x=\frac12\Rightarrow\cos^2x=t=\frac14
\frac{7\pm\sqrt{17+32a}}{16}=\frac14\Rightarrow\begin{cases}\frac{7+\sqrt{17+32a}}{16}=\frac14\\\frac{7-\sqrt{17+32a}}{16}=\frac14\end{cases}\Rightarrow\begin{cases}{7+\sqrt{17+32a}}=4\\{7-\sqrt{17+32a}}=4\end{cases}\Rightarrow\\
\Rightarrow\begin{cases}\sqrt{17+32a}=-3\\\sqrt{17+32a}=3\end{cases}\Rightarrow 17+32a=9\Rightarrow32a=-8\Rightarrow a=-\frac14=-0,25\\t_1=\frac{7+\sqrt{17-32\cdot0,25}}{16}=\frac{7+\sqrt{9}}{16}=\frac{10}{16}=\frac58\\t_2=\frac{7-\sqrt{17-32\cdot0,25}}{16}=\frac{7-\sqrt{9}}{16}=\frac{4}{16}=\frac14\\\cos^2x=\frac14\Rightarrow\cos x=\frac12\Rightarrow x=\frac\pi3+2\pi n,\;n\in\mathbb{Z}\\\cos^2x=\frac58\Rightarrow\cos x=\sqrt{\frac58}\Rightarrow x=\arccos\left(\sqrt{\frac58}\right)+2\pi n,\;n\in\mathbb{Z}
Объяснение:
Записать в стандартном виде
400000 = 4*10^5
23000 = 2,3*10^4
8760000 = 8,76*10^6
1230 = 1,23*10^3
43 = 4,3*10^1
0,00008 = 8*10^-5
0,0076 = 7,6*10^-3
0,098 = 9,8*10^-2
0,54 = 5,4*10^-1
0,1 = 1*10^-1
7000000 = 7*10^6
560000 = 5,6*10^5
2130000 = 2,13*10^6
19700 = 1,97*10^4
51 = 5,1*10^1
0,0007 = 7*10^-4
0,00678 = 6,78*10^-3
0,042 = 4,2*10^-2
0,34 = 3,4*10^-1
0,9 = 9*10^-1
Записать в виде натурального числа или десятичной дроби:
5 ∙ 106 = 5000000
2,7 ∙ 103 = 2700
1,56 ∙ 104 = 15600
6,78 ∙ 102 = 678
3 ∙ 10-6 = 0,000003
1,2 ∙ 10-4 = 0,00012
4,76 ∙ 10-3 = 0,00476
2,3 ∙ 10-1 = 0,23
2 ∙ 105 = 200000
7,7 ∙ 104 = 77000
5,86 ∙ 105 = 586000
2,18 ∙ 103 = 2180
4 ∙ 10-5 = 0,00004
7,2 ∙ 10-5 = 0,000072
6,12 ∙ 10-2 = 0,0612
6,5 ∙ 10-1 = 0,65
1. При каких значениях а уравнение sin ^2 x - (a+3) sin x + 3a = 0 не имеет решений ?
2. Решите уравнение cos ^2 x + cos 4x = a , если одно из его решений п/3
Участник Знаний
1. Квадратное уравнение не имеет решений, если его дискриминант отрицателен.
\sin^2x-(a+3)\sin x+3a=0\\\sin x=t,\;\sin^2x=t^2,\;-1\leq t\leq1\\t^2-(a+3)t+3a=0\\D=(-(a+3))^2-4\cdot1\cdot3a=(a+3)^2-12a=a^2-6a+9=(a-3)^2\\(a-3)^2
Последнее неравенство не имеет решений. Значит, исходное уравнение имеет решение (-ия) при любых а.
2.\;\cos^2x+\cos4x=a\\\cos4x=8\cos^4x-8\cos^2x+1\\\cos^2x+8\cos^4x-8\cos^2x+1=a\\8\cos^4x-7\cos^2x+(1-a)=0\\\cos^2x=t,\cos^4x=t^2,\;0\leq t\leq1\\8t^2-7t+(1-a)=0\\D=49-4\cdot8\cdot(1-a)=49-32+32a=17+32a\\t_{1,2}=\frac{7\pm\sqrt{17+32a}}{16}
Один из корней п/3, значит x=\frac\pi3\Rightarrow\cos x=\frac12\Rightarrow\cos^2x=t=\frac14
\frac{7\pm\sqrt{17+32a}}{16}=\frac14\Rightarrow\begin{cases}\frac{7+\sqrt{17+32a}}{16}=\frac14\\\frac{7-\sqrt{17+32a}}{16}=\frac14\end{cases}\Rightarrow\begin{cases}{7+\sqrt{17+32a}}=4\\{7-\sqrt{17+32a}}=4\end{cases}\Rightarrow\\
\Rightarrow\begin{cases}\sqrt{17+32a}=-3\\\sqrt{17+32a}=3\end{cases}\Rightarrow 17+32a=9\Rightarrow32a=-8\Rightarrow a=-\frac14=-0,25\\t_1=\frac{7+\sqrt{17-32\cdot0,25}}{16}=\frac{7+\sqrt{9}}{16}=\frac{10}{16}=\frac58\\t_2=\frac{7-\sqrt{17-32\cdot0,25}}{16}=\frac{7-\sqrt{9}}{16}=\frac{4}{16}=\frac14\\\cos^2x=\frac14\Rightarrow\cos x=\frac12\Rightarrow x=\frac\pi3+2\pi n,\;n\in\mathbb{Z}\\\cos^2x=\frac58\Rightarrow\cos x=\sqrt{\frac58}\Rightarrow x=\arccos\left(\sqrt{\frac58}\right)+2\pi n,\;n\in\mathbb{Z}
Объяснение: