√2x-1 < √x-4.
2x-1 < x-4.
x < -4+1.
x < -3.
√2x-1 < x-2.
2x-1 < x²-4x+4.
x²-4x+4-2x+1 > 0.
x²-6x+5 > 0.
(x-1)(x-5) > 0.
x>1, x>5 и x<1, x<5.
Найдём пересечение: (-бесконечность; 1) объединение (5; +бесконечность).
√16-5x 》x-2.
16-5x 》x²-4x+4.
x²-4x+4-16+5x 《 0.
x²+x-12 《 0.
(x+4)(x-3)《 0.
x《 -4, x 》3 и x 》-4, x《 3.
Найдём пересечение: [-4;3].
a√x > 3.
√x > 3/a.
x > (3/a)².
x > 9/a².
2√x+a > x+1.
√x+a > 0,5x+0,5.
x+a > 0,25x²+0,5x+0,25.
0,25x²+0,5x+0,25-x-a > 0.
0,25x²-0,5x+0,25-a > 0.
x²-2x+2-4a > 0.
(x-1)²+1-4a > 0.
Единственное до чего смог дойти, дальше не знаю, извини.
(1; 4); (4; 1)
{ x√x + y√y = 9
{ x√y + y√x = 6
Переходим к новым переменным
a = √x; x = a^2; x√x = a^3
b = √y; y = b^2; y√y = b^3
{ a^3 + b^3 = 9
{ a^2*b + ab^2 = 6
Умножим второе уравнение на 3
{ 3a^2*b + 3ab^2 = 18
Складываем уравнения
a^3 + b^3 + 3a^2*b + 3ab^2 = 9 + 18
Слева записан куб суммы
(a + b)^3 = 27
a + b = 3
b = 3 - a
Подставляем
a^2*(3 - a) + a(3 - a)^2 = 6
a(3 - a)(a + 3 - a) = 6
3a(3 - a) = 6
a(3 - a) = 2
-a^2 + 3a = 2
a^2 - 3a + 2 = 0
(a - 1)(a - 2) = 0
1) a = 1; b = 2
x = a^2 = 1; y = b^2 = 4
(1; 4) - это решение.
2) a = 2; b = 1
x = a^2 = 4; y = b^2 = 1
(4; 1) - это решение.
√2x-1 < √x-4.
2x-1 < x-4.
x < -4+1.
x < -3.
√2x-1 < x-2.
2x-1 < x²-4x+4.
x²-4x+4-2x+1 > 0.
x²-6x+5 > 0.
(x-1)(x-5) > 0.
x>1, x>5 и x<1, x<5.
Найдём пересечение: (-бесконечность; 1) объединение (5; +бесконечность).
√16-5x 》x-2.
16-5x 》x²-4x+4.
x²-4x+4-16+5x 《 0.
x²+x-12 《 0.
(x+4)(x-3)《 0.
x《 -4, x 》3 и x 》-4, x《 3.
Найдём пересечение: [-4;3].
a√x > 3.
√x > 3/a.
x > (3/a)².
x > 9/a².
2√x+a > x+1.
√x+a > 0,5x+0,5.
x+a > 0,25x²+0,5x+0,25.
0,25x²+0,5x+0,25-x-a > 0.
0,25x²-0,5x+0,25-a > 0.
x²-2x+2-4a > 0.
(x-1)²+1-4a > 0.
Единственное до чего смог дойти, дальше не знаю, извини.
(1; 4); (4; 1)
{ x√x + y√y = 9
{ x√y + y√x = 6
Переходим к новым переменным
a = √x; x = a^2; x√x = a^3
b = √y; y = b^2; y√y = b^3
{ a^3 + b^3 = 9
{ a^2*b + ab^2 = 6
Умножим второе уравнение на 3
{ a^3 + b^3 = 9
{ 3a^2*b + 3ab^2 = 18
Складываем уравнения
a^3 + b^3 + 3a^2*b + 3ab^2 = 9 + 18
Слева записан куб суммы
(a + b)^3 = 27
a + b = 3
b = 3 - a
Подставляем
a^2*(3 - a) + a(3 - a)^2 = 6
a(3 - a)(a + 3 - a) = 6
3a(3 - a) = 6
a(3 - a) = 2
-a^2 + 3a = 2
a^2 - 3a + 2 = 0
(a - 1)(a - 2) = 0
1) a = 1; b = 2
x = a^2 = 1; y = b^2 = 4
(1; 4) - это решение.
2) a = 2; b = 1
x = a^2 = 4; y = b^2 = 1
(4; 1) - это решение.