Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
2x²-4х+b=0 Это решается по дискриминанту вот формула D = b² - 4ac где а - это то число где x² где b - это то число где x где c - это то число где нет x Подставляем значения под формулу D = 4² - 4 * 2 * b = 16 - 8b = 8b дальше находим x1 и x2 по формуле х1= -b + квадратный корень из дискриминанта делим на 2а х2= -b - квадратный корень из дискриминанта делим на 2а Так же : если дискриминант отрицательный то корней нет если дискриминант равен нулю то корень только один если дискриминант больше нуля то уравнение имеет два корня
а2=а1+d
a3=а1+d+d
a1+а1+d+а1+d+d=18
3a1+3d=18
3*(a1+d)=18
a1+d=18/3
а1+d=6 - второй член арифм. прогрессии
также арифм. прогрессию можно записать как:
а1+а2+а3=18
а1+а3+6=18
а1+а3=12
а1=12-а3(это наша будущая подстановка)
b2=6+3
b2=9 - второй член геометр. прогрессии
теперь воспользуемся свойством геометр. прогрессии
(bn)^2=b(n-1)*b(n+1)
n-1 и n+1 номер члена прогрессии
(b2)^2=(a1+1)*(a3+17)
9^2=(a1+1)*(a3+17)
81=(a1+1)*(a3+17)
теперь вводим систему:
81=(a1+1)*(a3+17)
а1=12-а3
в 1 уравнение подставим второе
81=(12-а3+1)*(a3+17)
81=(13-а3)*(a3+17)
пусть а3=х
81=(13-х)*(х+17)
81=13х +221-х^2-17x
81=-x^2-4x+221
x^2+4x-221+81=0
x^2+4x-140=0
по т. виета
х1+х2=-4
х1*х2=-140
х1=10
х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая)
10=а3
18=10+6+а1
а1=2
ответ: 2,6,10
Это решается по дискриминанту
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то число где x
где c - это то число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле
х1= -b + квадратный корень из дискриминанта
делим на 2а
х2= -b - квадратный корень из дискриминанта
делим на 2а
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня