Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68
В решении.
Объяснение:
Выберите функции, графики которых параллельны, пересекаются или совпадают, ответ обоснуйте:
Уравнение линейной функции: у = kx + b.
A) у=6 и у=х+6
Прямые пересекутся, так как k₁ ≠ k₂.
B) 2у=4х+6 и у=2х+3
2у=4х+6/2
у=2х+3 и у=2х+3, это практически одна и та же функция.
Прямые сольются, так как k₁ = k₂, b₁ = b₂.
C) у= -4х-4 и у= -х-8
Прямые пересекутся, так как k₁ ≠ k₂
D) у= -3х+5 и у= -3х+6
Прямые параллельны, так как k₁ = k₂, а b₁ ≠ b₂.
E) у=0,5х+3 и у=2х+3
Прямые пересекутся, так как k₁ ≠ k₂.